| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn |  |-  2 e. NN | 
						
							| 2 |  | blennn |  |-  ( 2 e. NN -> ( #b ` 2 ) = ( ( |_ ` ( 2 logb 2 ) ) + 1 ) ) | 
						
							| 3 |  | 2cn |  |-  2 e. CC | 
						
							| 4 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 5 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 6 | 5 | necomi |  |-  2 =/= 1 | 
						
							| 7 |  | logbid1 |  |-  ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 2 ) = 1 ) | 
						
							| 8 | 3 4 6 7 | mp3an |  |-  ( 2 logb 2 ) = 1 | 
						
							| 9 | 8 | fveq2i |  |-  ( |_ ` ( 2 logb 2 ) ) = ( |_ ` 1 ) | 
						
							| 10 |  | 1z |  |-  1 e. ZZ | 
						
							| 11 |  | flid |  |-  ( 1 e. ZZ -> ( |_ ` 1 ) = 1 ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ( |_ ` 1 ) = 1 | 
						
							| 13 | 9 12 | eqtri |  |-  ( |_ ` ( 2 logb 2 ) ) = 1 | 
						
							| 14 | 13 | a1i |  |-  ( 2 e. NN -> ( |_ ` ( 2 logb 2 ) ) = 1 ) | 
						
							| 15 | 14 | oveq1d |  |-  ( 2 e. NN -> ( ( |_ ` ( 2 logb 2 ) ) + 1 ) = ( 1 + 1 ) ) | 
						
							| 16 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 17 | 16 | a1i |  |-  ( 2 e. NN -> ( 1 + 1 ) = 2 ) | 
						
							| 18 | 2 15 17 | 3eqtrd |  |-  ( 2 e. NN -> ( #b ` 2 ) = 2 ) | 
						
							| 19 | 1 18 | ax-mp |  |-  ( #b ` 2 ) = 2 |