| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
⊢ 1 ∈ ℕ |
| 2 |
|
blennn |
⊢ ( 1 ∈ ℕ → ( #b ‘ 1 ) = ( ( ⌊ ‘ ( 2 logb 1 ) ) + 1 ) ) |
| 3 |
|
2cn |
⊢ 2 ∈ ℂ |
| 4 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 5 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 6 |
5
|
necomi |
⊢ 2 ≠ 1 |
| 7 |
|
logb1 |
⊢ ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 1 ) = 0 ) |
| 8 |
3 4 6 7
|
mp3an |
⊢ ( 2 logb 1 ) = 0 |
| 9 |
8
|
fveq2i |
⊢ ( ⌊ ‘ ( 2 logb 1 ) ) = ( ⌊ ‘ 0 ) |
| 10 |
|
0z |
⊢ 0 ∈ ℤ |
| 11 |
|
flid |
⊢ ( 0 ∈ ℤ → ( ⌊ ‘ 0 ) = 0 ) |
| 12 |
10 11
|
ax-mp |
⊢ ( ⌊ ‘ 0 ) = 0 |
| 13 |
9 12
|
eqtri |
⊢ ( ⌊ ‘ ( 2 logb 1 ) ) = 0 |
| 14 |
13
|
a1i |
⊢ ( 1 ∈ ℕ → ( ⌊ ‘ ( 2 logb 1 ) ) = 0 ) |
| 15 |
14
|
oveq1d |
⊢ ( 1 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb 1 ) ) + 1 ) = ( 0 + 1 ) ) |
| 16 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 17 |
15 16
|
eqtrdi |
⊢ ( 1 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb 1 ) ) + 1 ) = 1 ) |
| 18 |
2 17
|
eqtrd |
⊢ ( 1 ∈ ℕ → ( #b ‘ 1 ) = 1 ) |
| 19 |
1 18
|
ax-mp |
⊢ ( #b ‘ 1 ) = 1 |