Metamath Proof Explorer


Theorem blen1

Description: The binary length of 1. (Contributed by AV, 21-May-2020)

Ref Expression
Assertion blen1 ( #b ‘ 1 ) = 1

Proof

Step Hyp Ref Expression
1 1nn 1 ∈ ℕ
2 blennn ( 1 ∈ ℕ → ( #b ‘ 1 ) = ( ( ⌊ ‘ ( 2 logb 1 ) ) + 1 ) )
3 2cn 2 ∈ ℂ
4 2ne0 2 ≠ 0
5 1ne2 1 ≠ 2
6 5 necomi 2 ≠ 1
7 logb1 ( ( 2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1 ) → ( 2 logb 1 ) = 0 )
8 3 4 6 7 mp3an ( 2 logb 1 ) = 0
9 8 fveq2i ( ⌊ ‘ ( 2 logb 1 ) ) = ( ⌊ ‘ 0 )
10 0z 0 ∈ ℤ
11 flid ( 0 ∈ ℤ → ( ⌊ ‘ 0 ) = 0 )
12 10 11 ax-mp ( ⌊ ‘ 0 ) = 0
13 9 12 eqtri ( ⌊ ‘ ( 2 logb 1 ) ) = 0
14 13 a1i ( 1 ∈ ℕ → ( ⌊ ‘ ( 2 logb 1 ) ) = 0 )
15 14 oveq1d ( 1 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb 1 ) ) + 1 ) = ( 0 + 1 ) )
16 0p1e1 ( 0 + 1 ) = 1
17 15 16 eqtrdi ( 1 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb 1 ) ) + 1 ) = 1 )
18 2 17 eqtrd ( 1 ∈ ℕ → ( #b ‘ 1 ) = 1 )
19 1 18 ax-mp ( #b ‘ 1 ) = 1