Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|- 2 e. NN |
2 |
1
|
a1i |
|- ( N e. NN -> 2 e. NN ) |
3 |
|
id |
|- ( N e. NN -> N e. NN ) |
4 |
2 3
|
nnmulcld |
|- ( N e. NN -> ( 2 x. N ) e. NN ) |
5 |
|
blennn |
|- ( ( 2 x. N ) e. NN -> ( #b ` ( 2 x. N ) ) = ( ( |_ ` ( 2 logb ( 2 x. N ) ) ) + 1 ) ) |
6 |
4 5
|
syl |
|- ( N e. NN -> ( #b ` ( 2 x. N ) ) = ( ( |_ ` ( 2 logb ( 2 x. N ) ) ) + 1 ) ) |
7 |
|
2cn |
|- 2 e. CC |
8 |
7
|
a1i |
|- ( N e. NN -> 2 e. CC ) |
9 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
10 |
8 9
|
mulcomd |
|- ( N e. NN -> ( 2 x. N ) = ( N x. 2 ) ) |
11 |
10
|
oveq2d |
|- ( N e. NN -> ( 2 logb ( 2 x. N ) ) = ( 2 logb ( N x. 2 ) ) ) |
12 |
|
2z |
|- 2 e. ZZ |
13 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
14 |
12 13
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
15 |
|
eluz2cnn0n1 |
|- ( 2 e. ( ZZ>= ` 2 ) -> 2 e. ( CC \ { 0 , 1 } ) ) |
16 |
14 15
|
mp1i |
|- ( N e. NN -> 2 e. ( CC \ { 0 , 1 } ) ) |
17 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
18 |
|
2rp |
|- 2 e. RR+ |
19 |
18
|
a1i |
|- ( N e. NN -> 2 e. RR+ ) |
20 |
|
relogbmul |
|- ( ( 2 e. ( CC \ { 0 , 1 } ) /\ ( N e. RR+ /\ 2 e. RR+ ) ) -> ( 2 logb ( N x. 2 ) ) = ( ( 2 logb N ) + ( 2 logb 2 ) ) ) |
21 |
16 17 19 20
|
syl12anc |
|- ( N e. NN -> ( 2 logb ( N x. 2 ) ) = ( ( 2 logb N ) + ( 2 logb 2 ) ) ) |
22 |
|
2ne0 |
|- 2 =/= 0 |
23 |
|
1ne2 |
|- 1 =/= 2 |
24 |
23
|
necomi |
|- 2 =/= 1 |
25 |
7 22 24
|
3pm3.2i |
|- ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) |
26 |
|
logbid1 |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ 2 =/= 1 ) -> ( 2 logb 2 ) = 1 ) |
27 |
25 26
|
mp1i |
|- ( N e. NN -> ( 2 logb 2 ) = 1 ) |
28 |
27
|
oveq2d |
|- ( N e. NN -> ( ( 2 logb N ) + ( 2 logb 2 ) ) = ( ( 2 logb N ) + 1 ) ) |
29 |
11 21 28
|
3eqtrd |
|- ( N e. NN -> ( 2 logb ( 2 x. N ) ) = ( ( 2 logb N ) + 1 ) ) |
30 |
29
|
fveq2d |
|- ( N e. NN -> ( |_ ` ( 2 logb ( 2 x. N ) ) ) = ( |_ ` ( ( 2 logb N ) + 1 ) ) ) |
31 |
24
|
a1i |
|- ( N e. NN -> 2 =/= 1 ) |
32 |
|
relogbcl |
|- ( ( 2 e. RR+ /\ N e. RR+ /\ 2 =/= 1 ) -> ( 2 logb N ) e. RR ) |
33 |
19 17 31 32
|
syl3anc |
|- ( N e. NN -> ( 2 logb N ) e. RR ) |
34 |
|
1zzd |
|- ( N e. NN -> 1 e. ZZ ) |
35 |
|
fladdz |
|- ( ( ( 2 logb N ) e. RR /\ 1 e. ZZ ) -> ( |_ ` ( ( 2 logb N ) + 1 ) ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
36 |
33 34 35
|
syl2anc |
|- ( N e. NN -> ( |_ ` ( ( 2 logb N ) + 1 ) ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
37 |
30 36
|
eqtrd |
|- ( N e. NN -> ( |_ ` ( 2 logb ( 2 x. N ) ) ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
38 |
37
|
oveq1d |
|- ( N e. NN -> ( ( |_ ` ( 2 logb ( 2 x. N ) ) ) + 1 ) = ( ( ( |_ ` ( 2 logb N ) ) + 1 ) + 1 ) ) |
39 |
|
blennn |
|- ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
40 |
39
|
eqcomd |
|- ( N e. NN -> ( ( |_ ` ( 2 logb N ) ) + 1 ) = ( #b ` N ) ) |
41 |
40
|
oveq1d |
|- ( N e. NN -> ( ( ( |_ ` ( 2 logb N ) ) + 1 ) + 1 ) = ( ( #b ` N ) + 1 ) ) |
42 |
6 38 41
|
3eqtrd |
|- ( N e. NN -> ( #b ` ( 2 x. N ) ) = ( ( #b ` N ) + 1 ) ) |