| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relogmul |
|- ( ( A e. RR+ /\ C e. RR+ ) -> ( log ` ( A x. C ) ) = ( ( log ` A ) + ( log ` C ) ) ) |
| 2 |
1
|
adantl |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ C e. RR+ ) ) -> ( log ` ( A x. C ) ) = ( ( log ` A ) + ( log ` C ) ) ) |
| 3 |
2
|
oveq1d |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ C e. RR+ ) ) -> ( ( log ` ( A x. C ) ) / ( log ` B ) ) = ( ( ( log ` A ) + ( log ` C ) ) / ( log ` B ) ) ) |
| 4 |
|
relogcl |
|- ( A e. RR+ -> ( log ` A ) e. RR ) |
| 5 |
4
|
recnd |
|- ( A e. RR+ -> ( log ` A ) e. CC ) |
| 6 |
5
|
adantr |
|- ( ( A e. RR+ /\ C e. RR+ ) -> ( log ` A ) e. CC ) |
| 7 |
|
relogcl |
|- ( C e. RR+ -> ( log ` C ) e. RR ) |
| 8 |
7
|
recnd |
|- ( C e. RR+ -> ( log ` C ) e. CC ) |
| 9 |
8
|
adantl |
|- ( ( A e. RR+ /\ C e. RR+ ) -> ( log ` C ) e. CC ) |
| 10 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 11 |
|
3simpa |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 ) ) |
| 12 |
10 11
|
sylbi |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( B e. CC /\ B =/= 0 ) ) |
| 13 |
|
logcl |
|- ( ( B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC ) |
| 14 |
12 13
|
syl |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( log ` B ) e. CC ) |
| 15 |
|
logccne0 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
| 16 |
10 15
|
sylbi |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( log ` B ) =/= 0 ) |
| 17 |
14 16
|
jca |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) ) |
| 18 |
17
|
adantr |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ C e. RR+ ) ) -> ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) ) |
| 19 |
|
divdir |
|- ( ( ( log ` A ) e. CC /\ ( log ` C ) e. CC /\ ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) ) -> ( ( ( log ` A ) + ( log ` C ) ) / ( log ` B ) ) = ( ( ( log ` A ) / ( log ` B ) ) + ( ( log ` C ) / ( log ` B ) ) ) ) |
| 20 |
6 9 18 19
|
syl2an23an |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ C e. RR+ ) ) -> ( ( ( log ` A ) + ( log ` C ) ) / ( log ` B ) ) = ( ( ( log ` A ) / ( log ` B ) ) + ( ( log ` C ) / ( log ` B ) ) ) ) |
| 21 |
3 20
|
eqtrd |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ C e. RR+ ) ) -> ( ( log ` ( A x. C ) ) / ( log ` B ) ) = ( ( ( log ` A ) / ( log ` B ) ) + ( ( log ` C ) / ( log ` B ) ) ) ) |
| 22 |
|
rpcn |
|- ( A e. RR+ -> A e. CC ) |
| 23 |
|
rpcn |
|- ( C e. RR+ -> C e. CC ) |
| 24 |
|
mulcl |
|- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) |
| 25 |
22 23 24
|
syl2an |
|- ( ( A e. RR+ /\ C e. RR+ ) -> ( A x. C ) e. CC ) |
| 26 |
22
|
adantr |
|- ( ( A e. RR+ /\ C e. RR+ ) -> A e. CC ) |
| 27 |
23
|
adantl |
|- ( ( A e. RR+ /\ C e. RR+ ) -> C e. CC ) |
| 28 |
|
rpne0 |
|- ( A e. RR+ -> A =/= 0 ) |
| 29 |
28
|
adantr |
|- ( ( A e. RR+ /\ C e. RR+ ) -> A =/= 0 ) |
| 30 |
|
rpne0 |
|- ( C e. RR+ -> C =/= 0 ) |
| 31 |
30
|
adantl |
|- ( ( A e. RR+ /\ C e. RR+ ) -> C =/= 0 ) |
| 32 |
26 27 29 31
|
mulne0d |
|- ( ( A e. RR+ /\ C e. RR+ ) -> ( A x. C ) =/= 0 ) |
| 33 |
|
eldifsn |
|- ( ( A x. C ) e. ( CC \ { 0 } ) <-> ( ( A x. C ) e. CC /\ ( A x. C ) =/= 0 ) ) |
| 34 |
25 32 33
|
sylanbrc |
|- ( ( A e. RR+ /\ C e. RR+ ) -> ( A x. C ) e. ( CC \ { 0 } ) ) |
| 35 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A x. C ) e. ( CC \ { 0 } ) ) -> ( B logb ( A x. C ) ) = ( ( log ` ( A x. C ) ) / ( log ` B ) ) ) |
| 36 |
34 35
|
sylan2 |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ C e. RR+ ) ) -> ( B logb ( A x. C ) ) = ( ( log ` ( A x. C ) ) / ( log ` B ) ) ) |
| 37 |
|
rpcndif0 |
|- ( A e. RR+ -> A e. ( CC \ { 0 } ) ) |
| 38 |
37
|
adantr |
|- ( ( A e. RR+ /\ C e. RR+ ) -> A e. ( CC \ { 0 } ) ) |
| 39 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ A e. ( CC \ { 0 } ) ) -> ( B logb A ) = ( ( log ` A ) / ( log ` B ) ) ) |
| 40 |
38 39
|
sylan2 |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ C e. RR+ ) ) -> ( B logb A ) = ( ( log ` A ) / ( log ` B ) ) ) |
| 41 |
|
rpcndif0 |
|- ( C e. RR+ -> C e. ( CC \ { 0 } ) ) |
| 42 |
41
|
adantl |
|- ( ( A e. RR+ /\ C e. RR+ ) -> C e. ( CC \ { 0 } ) ) |
| 43 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ C e. ( CC \ { 0 } ) ) -> ( B logb C ) = ( ( log ` C ) / ( log ` B ) ) ) |
| 44 |
42 43
|
sylan2 |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ C e. RR+ ) ) -> ( B logb C ) = ( ( log ` C ) / ( log ` B ) ) ) |
| 45 |
40 44
|
oveq12d |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ C e. RR+ ) ) -> ( ( B logb A ) + ( B logb C ) ) = ( ( ( log ` A ) / ( log ` B ) ) + ( ( log ` C ) / ( log ` B ) ) ) ) |
| 46 |
21 36 45
|
3eqtr4d |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ C e. RR+ ) ) -> ( B logb ( A x. C ) ) = ( ( B logb A ) + ( B logb C ) ) ) |