| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relogmul |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( log ‘ ( 𝐴 · 𝐶 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐶 ) ) ) |
| 2 |
1
|
adantl |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ) → ( log ‘ ( 𝐴 · 𝐶 ) ) = ( ( log ‘ 𝐴 ) + ( log ‘ 𝐶 ) ) ) |
| 3 |
2
|
oveq1d |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ) → ( ( log ‘ ( 𝐴 · 𝐶 ) ) / ( log ‘ 𝐵 ) ) = ( ( ( log ‘ 𝐴 ) + ( log ‘ 𝐶 ) ) / ( log ‘ 𝐵 ) ) ) |
| 4 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
4
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 7 |
|
relogcl |
⊢ ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( 𝐶 ∈ ℝ+ → ( log ‘ 𝐶 ) ∈ ℂ ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( log ‘ 𝐶 ) ∈ ℂ ) |
| 10 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
| 11 |
|
3simpa |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 12 |
10 11
|
sylbi |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 13 |
|
logcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 14 |
12 13
|
syl |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 15 |
|
logccne0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 ) |
| 16 |
10 15
|
sylbi |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → ( log ‘ 𝐵 ) ≠ 0 ) |
| 17 |
14 16
|
jca |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → ( ( log ‘ 𝐵 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ≠ 0 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ) → ( ( log ‘ 𝐵 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ≠ 0 ) ) |
| 19 |
|
divdir |
⊢ ( ( ( log ‘ 𝐴 ) ∈ ℂ ∧ ( log ‘ 𝐶 ) ∈ ℂ ∧ ( ( log ‘ 𝐵 ) ∈ ℂ ∧ ( log ‘ 𝐵 ) ≠ 0 ) ) → ( ( ( log ‘ 𝐴 ) + ( log ‘ 𝐶 ) ) / ( log ‘ 𝐵 ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) + ( ( log ‘ 𝐶 ) / ( log ‘ 𝐵 ) ) ) ) |
| 20 |
6 9 18 19
|
syl2an23an |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ) → ( ( ( log ‘ 𝐴 ) + ( log ‘ 𝐶 ) ) / ( log ‘ 𝐵 ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) + ( ( log ‘ 𝐶 ) / ( log ‘ 𝐵 ) ) ) ) |
| 21 |
3 20
|
eqtrd |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ) → ( ( log ‘ ( 𝐴 · 𝐶 ) ) / ( log ‘ 𝐵 ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) + ( ( log ‘ 𝐶 ) / ( log ‘ 𝐵 ) ) ) ) |
| 22 |
|
rpcn |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
| 23 |
|
rpcn |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ℂ ) |
| 24 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 25 |
22 23 24
|
syl2an |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 26 |
22
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 27 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ℂ ) |
| 28 |
|
rpne0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ≠ 0 ) |
| 30 |
|
rpne0 |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ≠ 0 ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ≠ 0 ) |
| 32 |
26 27 29 31
|
mulne0d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 · 𝐶 ) ≠ 0 ) |
| 33 |
|
eldifsn |
⊢ ( ( 𝐴 · 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 𝐴 · 𝐶 ) ∈ ℂ ∧ ( 𝐴 · 𝐶 ) ≠ 0 ) ) |
| 34 |
25 32 33
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → ( 𝐴 · 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 35 |
|
logbval |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 · 𝐶 ) ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb ( 𝐴 · 𝐶 ) ) = ( ( log ‘ ( 𝐴 · 𝐶 ) ) / ( log ‘ 𝐵 ) ) ) |
| 36 |
34 35
|
sylan2 |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ) → ( 𝐵 logb ( 𝐴 · 𝐶 ) ) = ( ( log ‘ ( 𝐴 · 𝐶 ) ) / ( log ‘ 𝐵 ) ) ) |
| 37 |
|
rpcndif0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
| 39 |
|
logbval |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝐴 ) = ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) ) |
| 40 |
38 39
|
sylan2 |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ) → ( 𝐵 logb 𝐴 ) = ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) ) |
| 41 |
|
rpcndif0 |
⊢ ( 𝐶 ∈ ℝ+ → 𝐶 ∈ ( ℂ ∖ { 0 } ) ) |
| 42 |
41
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) → 𝐶 ∈ ( ℂ ∖ { 0 } ) ) |
| 43 |
|
logbval |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐶 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝐶 ) = ( ( log ‘ 𝐶 ) / ( log ‘ 𝐵 ) ) ) |
| 44 |
42 43
|
sylan2 |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ) → ( 𝐵 logb 𝐶 ) = ( ( log ‘ 𝐶 ) / ( log ‘ 𝐵 ) ) ) |
| 45 |
40 44
|
oveq12d |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ) → ( ( 𝐵 logb 𝐴 ) + ( 𝐵 logb 𝐶 ) ) = ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝐵 ) ) + ( ( log ‘ 𝐶 ) / ( log ‘ 𝐵 ) ) ) ) |
| 46 |
21 36 45
|
3eqtr4d |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ) ) → ( 𝐵 logb ( 𝐴 · 𝐶 ) ) = ( ( 𝐵 logb 𝐴 ) + ( 𝐵 logb 𝐶 ) ) ) |