| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 2 |  | blennn | ⊢ ( 𝑁  ∈  ℕ  →  ( #b ‘ 𝑁 )  =  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) | 
						
							| 3 | 2 | eqeq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( #b ‘ 𝑁 )  =  1  ↔  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  =  1 ) ) | 
						
							| 4 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℝ+ ) | 
						
							| 6 |  | nnrp | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ+ ) | 
						
							| 7 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 8 | 7 | necomi | ⊢ 2  ≠  1 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ≠  1 ) | 
						
							| 10 |  | relogbcl | ⊢ ( ( 2  ∈  ℝ+  ∧  𝑁  ∈  ℝ+  ∧  2  ≠  1 )  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 11 | 5 6 9 10 | syl3anc | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  logb  𝑁 )  ∈  ℝ ) | 
						
							| 12 | 11 | flcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ∈  ℤ ) | 
						
							| 13 | 12 | zcnd | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ ( 2  logb  𝑁 ) )  ∈  ℂ ) | 
						
							| 14 |  | 1cnd | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 15 | 13 14 14 | addlsub | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  =  1  ↔  ( ⌊ ‘ ( 2  logb  𝑁 ) )  =  ( 1  −  1 ) ) ) | 
						
							| 16 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  −  1 )  =  0 ) | 
						
							| 18 | 17 | eqeq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  =  ( 1  −  1 )  ↔  ( ⌊ ‘ ( 2  logb  𝑁 ) )  =  0 ) ) | 
						
							| 19 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 20 |  | flbi | ⊢ ( ( ( 2  logb  𝑁 )  ∈  ℝ  ∧  0  ∈  ℤ )  →  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  =  0  ↔  ( 0  ≤  ( 2  logb  𝑁 )  ∧  ( 2  logb  𝑁 )  <  ( 0  +  1 ) ) ) ) | 
						
							| 21 | 11 19 20 | sylancl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  =  0  ↔  ( 0  ≤  ( 2  logb  𝑁 )  ∧  ( 2  logb  𝑁 )  <  ( 0  +  1 ) ) ) ) | 
						
							| 22 | 15 18 21 | 3bitrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  =  1  ↔  ( 0  ≤  ( 2  logb  𝑁 )  ∧  ( 2  logb  𝑁 )  <  ( 0  +  1 ) ) ) ) | 
						
							| 23 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 24 | 23 | breq2i | ⊢ ( ( 2  logb  𝑁 )  <  ( 0  +  1 )  ↔  ( 2  logb  𝑁 )  <  1 ) | 
						
							| 25 | 24 | anbi2i | ⊢ ( ( 0  ≤  ( 2  logb  𝑁 )  ∧  ( 2  logb  𝑁 )  <  ( 0  +  1 ) )  ↔  ( 0  ≤  ( 2  logb  𝑁 )  ∧  ( 2  logb  𝑁 )  <  1 ) ) | 
						
							| 26 |  | nnlog2ge0lt1 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  =  1  ↔  ( 0  ≤  ( 2  logb  𝑁 )  ∧  ( 2  logb  𝑁 )  <  1 ) ) ) | 
						
							| 27 | 26 | biimpar | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 0  ≤  ( 2  logb  𝑁 )  ∧  ( 2  logb  𝑁 )  <  1 ) )  →  𝑁  =  1 ) | 
						
							| 28 | 27 | olcd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 0  ≤  ( 2  logb  𝑁 )  ∧  ( 2  logb  𝑁 )  <  1 ) )  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) | 
						
							| 29 | 28 | ex | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 0  ≤  ( 2  logb  𝑁 )  ∧  ( 2  logb  𝑁 )  <  1 )  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 30 | 25 29 | biimtrid | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 0  ≤  ( 2  logb  𝑁 )  ∧  ( 2  logb  𝑁 )  <  ( 0  +  1 ) )  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 31 | 22 30 | sylbid | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 )  =  1  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 32 | 3 31 | sylbid | ⊢ ( 𝑁  ∈  ℕ  →  ( ( #b ‘ 𝑁 )  =  1  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 33 |  | orc | ⊢ ( 𝑁  =  0  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) | 
						
							| 34 | 33 | a1d | ⊢ ( 𝑁  =  0  →  ( ( #b ‘ 𝑁 )  =  1  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 35 | 32 34 | jaoi | ⊢ ( ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 )  →  ( ( #b ‘ 𝑁 )  =  1  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 36 | 1 35 | sylbi | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( #b ‘ 𝑁 )  =  1  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑁  =  0  →  ( #b ‘ 𝑁 )  =  ( #b ‘ 0 ) ) | 
						
							| 38 |  | blen0 | ⊢ ( #b ‘ 0 )  =  1 | 
						
							| 39 | 37 38 | eqtrdi | ⊢ ( 𝑁  =  0  →  ( #b ‘ 𝑁 )  =  1 ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑁  =  1  →  ( #b ‘ 𝑁 )  =  ( #b ‘ 1 ) ) | 
						
							| 41 |  | blen1 | ⊢ ( #b ‘ 1 )  =  1 | 
						
							| 42 | 40 41 | eqtrdi | ⊢ ( 𝑁  =  1  →  ( #b ‘ 𝑁 )  =  1 ) | 
						
							| 43 | 39 42 | jaoi | ⊢ ( ( 𝑁  =  0  ∨  𝑁  =  1 )  →  ( #b ‘ 𝑁 )  =  1 ) | 
						
							| 44 | 36 43 | impbid1 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( #b ‘ 𝑁 )  =  1  ↔  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) ) |