Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
2 |
|
blennn |
⊢ ( 𝑁 ∈ ℕ → ( #b ‘ 𝑁 ) = ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( #b ‘ 𝑁 ) = 1 ↔ ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) = 1 ) ) |
4 |
|
2rp |
⊢ 2 ∈ ℝ+ |
5 |
4
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ+ ) |
6 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
7 |
|
1ne2 |
⊢ 1 ≠ 2 |
8 |
7
|
necomi |
⊢ 2 ≠ 1 |
9 |
8
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ≠ 1 ) |
10 |
|
relogbcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1 ) → ( 2 logb 𝑁 ) ∈ ℝ ) |
11 |
5 6 9 10
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → ( 2 logb 𝑁 ) ∈ ℝ ) |
12 |
11
|
flcld |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℤ ) |
13 |
12
|
zcnd |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℂ ) |
14 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
15 |
13 14 14
|
addlsub |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) = 1 ↔ ( ⌊ ‘ ( 2 logb 𝑁 ) ) = ( 1 − 1 ) ) ) |
16 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
17 |
16
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 1 − 1 ) = 0 ) |
18 |
17
|
eqeq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) = ( 1 − 1 ) ↔ ( ⌊ ‘ ( 2 logb 𝑁 ) ) = 0 ) ) |
19 |
|
0z |
⊢ 0 ∈ ℤ |
20 |
|
flbi |
⊢ ( ( ( 2 logb 𝑁 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) = 0 ↔ ( 0 ≤ ( 2 logb 𝑁 ) ∧ ( 2 logb 𝑁 ) < ( 0 + 1 ) ) ) ) |
21 |
11 19 20
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) = 0 ↔ ( 0 ≤ ( 2 logb 𝑁 ) ∧ ( 2 logb 𝑁 ) < ( 0 + 1 ) ) ) ) |
22 |
15 18 21
|
3bitrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) = 1 ↔ ( 0 ≤ ( 2 logb 𝑁 ) ∧ ( 2 logb 𝑁 ) < ( 0 + 1 ) ) ) ) |
23 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
24 |
23
|
breq2i |
⊢ ( ( 2 logb 𝑁 ) < ( 0 + 1 ) ↔ ( 2 logb 𝑁 ) < 1 ) |
25 |
24
|
anbi2i |
⊢ ( ( 0 ≤ ( 2 logb 𝑁 ) ∧ ( 2 logb 𝑁 ) < ( 0 + 1 ) ) ↔ ( 0 ≤ ( 2 logb 𝑁 ) ∧ ( 2 logb 𝑁 ) < 1 ) ) |
26 |
|
nnlog2ge0lt1 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 = 1 ↔ ( 0 ≤ ( 2 logb 𝑁 ) ∧ ( 2 logb 𝑁 ) < 1 ) ) ) |
27 |
26
|
biimpar |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 0 ≤ ( 2 logb 𝑁 ) ∧ ( 2 logb 𝑁 ) < 1 ) ) → 𝑁 = 1 ) |
28 |
27
|
olcd |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 0 ≤ ( 2 logb 𝑁 ) ∧ ( 2 logb 𝑁 ) < 1 ) ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
29 |
28
|
ex |
⊢ ( 𝑁 ∈ ℕ → ( ( 0 ≤ ( 2 logb 𝑁 ) ∧ ( 2 logb 𝑁 ) < 1 ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
30 |
25 29
|
syl5bi |
⊢ ( 𝑁 ∈ ℕ → ( ( 0 ≤ ( 2 logb 𝑁 ) ∧ ( 2 logb 𝑁 ) < ( 0 + 1 ) ) → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
31 |
22 30
|
sylbid |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) = 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
32 |
3 31
|
sylbid |
⊢ ( 𝑁 ∈ ℕ → ( ( #b ‘ 𝑁 ) = 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
33 |
|
orc |
⊢ ( 𝑁 = 0 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
34 |
33
|
a1d |
⊢ ( 𝑁 = 0 → ( ( #b ‘ 𝑁 ) = 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
35 |
32 34
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( ( #b ‘ 𝑁 ) = 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
36 |
1 35
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → ( ( #b ‘ 𝑁 ) = 1 → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |
37 |
|
fveq2 |
⊢ ( 𝑁 = 0 → ( #b ‘ 𝑁 ) = ( #b ‘ 0 ) ) |
38 |
|
blen0 |
⊢ ( #b ‘ 0 ) = 1 |
39 |
37 38
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( #b ‘ 𝑁 ) = 1 ) |
40 |
|
fveq2 |
⊢ ( 𝑁 = 1 → ( #b ‘ 𝑁 ) = ( #b ‘ 1 ) ) |
41 |
|
blen1 |
⊢ ( #b ‘ 1 ) = 1 |
42 |
40 41
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( #b ‘ 𝑁 ) = 1 ) |
43 |
39 42
|
jaoi |
⊢ ( ( 𝑁 = 0 ∨ 𝑁 = 1 ) → ( #b ‘ 𝑁 ) = 1 ) |
44 |
36 43
|
impbid1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ( #b ‘ 𝑁 ) = 1 ↔ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) ) |