Description: The binary length of 0. (Contributed by AV, 20-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blen0 | ⊢ ( #b ‘ 0 ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | ⊢ 0 ∈ V | |
| 2 | blenval | ⊢ ( 0 ∈ V → ( #b ‘ 0 ) = if ( 0 = 0 , 1 , ( ( ⌊ ‘ ( 2 logb ( abs ‘ 0 ) ) ) + 1 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( #b ‘ 0 ) = if ( 0 = 0 , 1 , ( ( ⌊ ‘ ( 2 logb ( abs ‘ 0 ) ) ) + 1 ) ) |
| 4 | eqid | ⊢ 0 = 0 | |
| 5 | 4 | iftruei | ⊢ if ( 0 = 0 , 1 , ( ( ⌊ ‘ ( 2 logb ( abs ‘ 0 ) ) ) + 1 ) ) = 1 |
| 6 | 3 5 | eqtri | ⊢ ( #b ‘ 0 ) = 1 |