Description: The binary length of a "number" not being 0. (Contributed by AV, 20-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blenn0 | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 0 ) → ( #b ‘ 𝑁 ) = ( ( ⌊ ‘ ( 2 logb ( abs ‘ 𝑁 ) ) ) + 1 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | blenval | ⊢ ( 𝑁 ∈ 𝑉 → ( #b ‘ 𝑁 ) = if ( 𝑁 = 0 , 1 , ( ( ⌊ ‘ ( 2 logb ( abs ‘ 𝑁 ) ) ) + 1 ) ) ) | |
| 2 | ifnefalse | ⊢ ( 𝑁 ≠ 0 → if ( 𝑁 = 0 , 1 , ( ( ⌊ ‘ ( 2 logb ( abs ‘ 𝑁 ) ) ) + 1 ) ) = ( ( ⌊ ‘ ( 2 logb ( abs ‘ 𝑁 ) ) ) + 1 ) ) | |
| 3 | 1 2 | sylan9eq | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 0 ) → ( #b ‘ 𝑁 ) = ( ( ⌊ ‘ ( 2 logb ( abs ‘ 𝑁 ) ) ) + 1 ) ) |