Metamath Proof Explorer


Theorem blenn0

Description: The binary length of a "number" not being 0. (Contributed by AV, 20-May-2020)

Ref Expression
Assertion blenn0 N V N 0 # b N = log 2 N + 1

Proof

Step Hyp Ref Expression
1 blenval N V # b N = if N = 0 1 log 2 N + 1
2 ifnefalse N 0 if N = 0 1 log 2 N + 1 = log 2 N + 1
3 1 2 sylan9eq N V N 0 # b N = log 2 N + 1