Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
Binary length
blenval
Next ⟩
blen0
Metamath Proof Explorer
Ascii
Unicode
Theorem
blenval
Description:
The binary length of an integer.
(Contributed by
AV
, 20-May-2020)
Ref
Expression
Assertion
blenval
⊢
N
∈
V
→
#
b
⁡
N
=
if
N
=
0
1
log
2
N
+
1
Proof
Step
Hyp
Ref
Expression
1
df-blen
⊢
#
b
=
n
∈
V
⟼
if
n
=
0
1
log
2
n
+
1
2
eqeq1
⊢
n
=
N
→
n
=
0
↔
N
=
0
3
fveq2
⊢
n
=
N
→
n
=
N
4
3
oveq2d
⊢
n
=
N
→
log
2
n
=
log
2
N
5
4
fveq2d
⊢
n
=
N
→
log
2
n
=
log
2
N
6
5
oveq1d
⊢
n
=
N
→
log
2
n
+
1
=
log
2
N
+
1
7
2
6
ifbieq2d
⊢
n
=
N
→
if
n
=
0
1
log
2
n
+
1
=
if
N
=
0
1
log
2
N
+
1
8
elex
⊢
N
∈
V
→
N
∈
V
9
1ex
⊢
1
∈
V
10
ovex
⊢
log
2
N
+
1
∈
V
11
9
10
ifex
⊢
if
N
=
0
1
log
2
N
+
1
∈
V
12
11
a1i
⊢
N
∈
V
→
if
N
=
0
1
log
2
N
+
1
∈
V
13
1
7
8
12
fvmptd3
⊢
N
∈
V
→
#
b
⁡
N
=
if
N
=
0
1
log
2
N
+
1