| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-blen |  |-  #b = ( n e. _V |-> if ( n = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) ) ) | 
						
							| 2 |  | eqeq1 |  |-  ( n = N -> ( n = 0 <-> N = 0 ) ) | 
						
							| 3 |  | fveq2 |  |-  ( n = N -> ( abs ` n ) = ( abs ` N ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( n = N -> ( 2 logb ( abs ` n ) ) = ( 2 logb ( abs ` N ) ) ) | 
						
							| 5 | 4 | fveq2d |  |-  ( n = N -> ( |_ ` ( 2 logb ( abs ` n ) ) ) = ( |_ ` ( 2 logb ( abs ` N ) ) ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( n = N -> ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) = ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) | 
						
							| 7 | 2 6 | ifbieq2d |  |-  ( n = N -> if ( n = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) ) = if ( N = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) ) | 
						
							| 8 |  | elex |  |-  ( N e. V -> N e. _V ) | 
						
							| 9 |  | 1ex |  |-  1 e. _V | 
						
							| 10 |  | ovex |  |-  ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) e. _V | 
						
							| 11 | 9 10 | ifex |  |-  if ( N = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) e. _V | 
						
							| 12 | 11 | a1i |  |-  ( N e. V -> if ( N = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) e. _V ) | 
						
							| 13 | 1 7 8 12 | fvmptd3 |  |-  ( N e. V -> ( #b ` N ) = if ( N = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) ) |