Step |
Hyp |
Ref |
Expression |
1 |
|
df-blen |
|- #b = ( n e. _V |-> if ( n = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) ) ) |
2 |
|
eqeq1 |
|- ( n = N -> ( n = 0 <-> N = 0 ) ) |
3 |
|
fveq2 |
|- ( n = N -> ( abs ` n ) = ( abs ` N ) ) |
4 |
3
|
oveq2d |
|- ( n = N -> ( 2 logb ( abs ` n ) ) = ( 2 logb ( abs ` N ) ) ) |
5 |
4
|
fveq2d |
|- ( n = N -> ( |_ ` ( 2 logb ( abs ` n ) ) ) = ( |_ ` ( 2 logb ( abs ` N ) ) ) ) |
6 |
5
|
oveq1d |
|- ( n = N -> ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) = ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) |
7 |
2 6
|
ifbieq2d |
|- ( n = N -> if ( n = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) ) = if ( N = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) ) |
8 |
|
elex |
|- ( N e. V -> N e. _V ) |
9 |
|
1ex |
|- 1 e. _V |
10 |
|
ovex |
|- ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) e. _V |
11 |
9 10
|
ifex |
|- if ( N = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) e. _V |
12 |
11
|
a1i |
|- ( N e. V -> if ( N = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) e. _V ) |
13 |
1 7 8 12
|
fvmptd3 |
|- ( N e. V -> ( #b ` N ) = if ( N = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) ) |