| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-blen | ⊢ #b  =  ( 𝑛  ∈  V  ↦  if ( 𝑛  =  0 ,  1 ,  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑛 ) ) )  +  1 ) ) ) | 
						
							| 2 |  | eqeq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  =  0  ↔  𝑁  =  0 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑛  =  𝑁  →  ( abs ‘ 𝑛 )  =  ( abs ‘ 𝑁 ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( 𝑛  =  𝑁  →  ( 2  logb  ( abs ‘ 𝑛 ) )  =  ( 2  logb  ( abs ‘ 𝑁 ) ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑛  =  𝑁  →  ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑛 ) ) )  =  ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑁 ) ) ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( 𝑛  =  𝑁  →  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑛 ) ) )  +  1 )  =  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑁 ) ) )  +  1 ) ) | 
						
							| 7 | 2 6 | ifbieq2d | ⊢ ( 𝑛  =  𝑁  →  if ( 𝑛  =  0 ,  1 ,  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑛 ) ) )  +  1 ) )  =  if ( 𝑁  =  0 ,  1 ,  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑁 ) ) )  +  1 ) ) ) | 
						
							| 8 |  | elex | ⊢ ( 𝑁  ∈  𝑉  →  𝑁  ∈  V ) | 
						
							| 9 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 10 |  | ovex | ⊢ ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑁 ) ) )  +  1 )  ∈  V | 
						
							| 11 | 9 10 | ifex | ⊢ if ( 𝑁  =  0 ,  1 ,  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑁 ) ) )  +  1 ) )  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝑁  ∈  𝑉  →  if ( 𝑁  =  0 ,  1 ,  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑁 ) ) )  +  1 ) )  ∈  V ) | 
						
							| 13 | 1 7 8 12 | fvmptd3 | ⊢ ( 𝑁  ∈  𝑉  →  ( #b ‘ 𝑁 )  =  if ( 𝑁  =  0 ,  1 ,  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑁 ) ) )  +  1 ) ) ) |