| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cblen | ⊢ #b | 
						
							| 1 |  | vn | ⊢ 𝑛 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 | 1 | cv | ⊢ 𝑛 | 
						
							| 4 |  | cc0 | ⊢ 0 | 
						
							| 5 | 3 4 | wceq | ⊢ 𝑛  =  0 | 
						
							| 6 |  | c1 | ⊢ 1 | 
						
							| 7 |  | cfl | ⊢ ⌊ | 
						
							| 8 |  | c2 | ⊢ 2 | 
						
							| 9 |  | clogb | ⊢  logb | 
						
							| 10 |  | cabs | ⊢ abs | 
						
							| 11 | 3 10 | cfv | ⊢ ( abs ‘ 𝑛 ) | 
						
							| 12 | 8 11 9 | co | ⊢ ( 2  logb  ( abs ‘ 𝑛 ) ) | 
						
							| 13 | 12 7 | cfv | ⊢ ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑛 ) ) ) | 
						
							| 14 |  | caddc | ⊢  + | 
						
							| 15 | 13 6 14 | co | ⊢ ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑛 ) ) )  +  1 ) | 
						
							| 16 | 5 6 15 | cif | ⊢ if ( 𝑛  =  0 ,  1 ,  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑛 ) ) )  +  1 ) ) | 
						
							| 17 | 1 2 16 | cmpt | ⊢ ( 𝑛  ∈  V  ↦  if ( 𝑛  =  0 ,  1 ,  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑛 ) ) )  +  1 ) ) ) | 
						
							| 18 | 0 17 | wceq | ⊢ #b  =  ( 𝑛  ∈  V  ↦  if ( 𝑛  =  0 ,  1 ,  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑛 ) ) )  +  1 ) ) ) |