| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cblen |  |-  #b | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 | 1 | cv |  |-  n | 
						
							| 4 |  | cc0 |  |-  0 | 
						
							| 5 | 3 4 | wceq |  |-  n = 0 | 
						
							| 6 |  | c1 |  |-  1 | 
						
							| 7 |  | cfl |  |-  |_ | 
						
							| 8 |  | c2 |  |-  2 | 
						
							| 9 |  | clogb |  |-  logb | 
						
							| 10 |  | cabs |  |-  abs | 
						
							| 11 | 3 10 | cfv |  |-  ( abs ` n ) | 
						
							| 12 | 8 11 9 | co |  |-  ( 2 logb ( abs ` n ) ) | 
						
							| 13 | 12 7 | cfv |  |-  ( |_ ` ( 2 logb ( abs ` n ) ) ) | 
						
							| 14 |  | caddc |  |-  + | 
						
							| 15 | 13 6 14 | co |  |-  ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) | 
						
							| 16 | 5 6 15 | cif |  |-  if ( n = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) ) | 
						
							| 17 | 1 2 16 | cmpt |  |-  ( n e. _V |-> if ( n = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) ) ) | 
						
							| 18 | 0 17 | wceq |  |-  #b = ( n e. _V |-> if ( n = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) ) ) |