| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cblen |
|- #b |
| 1 |
|
vn |
|- n |
| 2 |
|
cvv |
|- _V |
| 3 |
1
|
cv |
|- n |
| 4 |
|
cc0 |
|- 0 |
| 5 |
3 4
|
wceq |
|- n = 0 |
| 6 |
|
c1 |
|- 1 |
| 7 |
|
cfl |
|- |_ |
| 8 |
|
c2 |
|- 2 |
| 9 |
|
clogb |
|- logb |
| 10 |
|
cabs |
|- abs |
| 11 |
3 10
|
cfv |
|- ( abs ` n ) |
| 12 |
8 11 9
|
co |
|- ( 2 logb ( abs ` n ) ) |
| 13 |
12 7
|
cfv |
|- ( |_ ` ( 2 logb ( abs ` n ) ) ) |
| 14 |
|
caddc |
|- + |
| 15 |
13 6 14
|
co |
|- ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) |
| 16 |
5 6 15
|
cif |
|- if ( n = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) ) |
| 17 |
1 2 16
|
cmpt |
|- ( n e. _V |-> if ( n = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) ) ) |
| 18 |
0 17
|
wceq |
|- #b = ( n e. _V |-> if ( n = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` n ) ) ) + 1 ) ) ) |