Description: The binary length of 0. (Contributed by AV, 20-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blen0 | |- ( #b ` 0 ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | |- 0 e. _V |
|
| 2 | blenval | |- ( 0 e. _V -> ( #b ` 0 ) = if ( 0 = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` 0 ) ) ) + 1 ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( #b ` 0 ) = if ( 0 = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` 0 ) ) ) + 1 ) ) |
| 4 | eqid | |- 0 = 0 |
|
| 5 | 4 | iftruei | |- if ( 0 = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` 0 ) ) ) + 1 ) ) = 1 |
| 6 | 3 5 | eqtri | |- ( #b ` 0 ) = 1 |