Metamath Proof Explorer


Theorem blen0

Description: The binary length of 0. (Contributed by AV, 20-May-2020)

Ref Expression
Assertion blen0
|- ( #b ` 0 ) = 1

Proof

Step Hyp Ref Expression
1 c0ex
 |-  0 e. _V
2 blenval
 |-  ( 0 e. _V -> ( #b ` 0 ) = if ( 0 = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` 0 ) ) ) + 1 ) ) )
3 1 2 ax-mp
 |-  ( #b ` 0 ) = if ( 0 = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` 0 ) ) ) + 1 ) )
4 eqid
 |-  0 = 0
5 4 iftruei
 |-  if ( 0 = 0 , 1 , ( ( |_ ` ( 2 logb ( abs ` 0 ) ) ) + 1 ) ) = 1
6 3 5 eqtri
 |-  ( #b ` 0 ) = 1