Metamath Proof Explorer


Theorem blenre

Description: The binary length of a positive real number. (Contributed by AV, 20-May-2020)

Ref Expression
Assertion blenre N + # b N = log 2 N + 1

Proof

Step Hyp Ref Expression
1 rpne0 N + N 0
2 blenn0 N + N 0 # b N = log 2 N + 1
3 1 2 mpdan N + # b N = log 2 N + 1
4 rpre N + N
5 rpge0 N + 0 N
6 4 5 absidd N + N = N
7 6 oveq2d N + log 2 N = log 2 N
8 7 fveq2d N + log 2 N = log 2 N
9 8 oveq1d N + log 2 N + 1 = log 2 N + 1
10 3 9 eqtrd N + # b N = log 2 N + 1