Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
Binary length
blenre
Next ⟩
blennn
Metamath Proof Explorer
Ascii
Unicode
Theorem
blenre
Description:
The binary length of a positive real number.
(Contributed by
AV
, 20-May-2020)
Ref
Expression
Assertion
blenre
⊢
N
∈
ℝ
+
→
#
b
⁡
N
=
log
2
N
+
1
Proof
Step
Hyp
Ref
Expression
1
rpne0
⊢
N
∈
ℝ
+
→
N
≠
0
2
blenn0
⊢
N
∈
ℝ
+
∧
N
≠
0
→
#
b
⁡
N
=
log
2
N
+
1
3
1
2
mpdan
⊢
N
∈
ℝ
+
→
#
b
⁡
N
=
log
2
N
+
1
4
rpre
⊢
N
∈
ℝ
+
→
N
∈
ℝ
5
rpge0
⊢
N
∈
ℝ
+
→
0
≤
N
6
4
5
absidd
⊢
N
∈
ℝ
+
→
N
=
N
7
6
oveq2d
⊢
N
∈
ℝ
+
→
log
2
N
=
log
2
N
8
7
fveq2d
⊢
N
∈
ℝ
+
→
log
2
N
=
log
2
N
9
8
oveq1d
⊢
N
∈
ℝ
+
→
log
2
N
+
1
=
log
2
N
+
1
10
3
9
eqtrd
⊢
N
∈
ℝ
+
→
#
b
⁡
N
=
log
2
N
+
1