| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpne0 | ⊢ ( 𝑁  ∈  ℝ+  →  𝑁  ≠  0 ) | 
						
							| 2 |  | blenn0 | ⊢ ( ( 𝑁  ∈  ℝ+  ∧  𝑁  ≠  0 )  →  ( #b ‘ 𝑁 )  =  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑁 ) ) )  +  1 ) ) | 
						
							| 3 | 1 2 | mpdan | ⊢ ( 𝑁  ∈  ℝ+  →  ( #b ‘ 𝑁 )  =  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑁 ) ) )  +  1 ) ) | 
						
							| 4 |  | rpre | ⊢ ( 𝑁  ∈  ℝ+  →  𝑁  ∈  ℝ ) | 
						
							| 5 |  | rpge0 | ⊢ ( 𝑁  ∈  ℝ+  →  0  ≤  𝑁 ) | 
						
							| 6 | 4 5 | absidd | ⊢ ( 𝑁  ∈  ℝ+  →  ( abs ‘ 𝑁 )  =  𝑁 ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑁  ∈  ℝ+  →  ( 2  logb  ( abs ‘ 𝑁 ) )  =  ( 2  logb  𝑁 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑁  ∈  ℝ+  →  ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑁 ) ) )  =  ( ⌊ ‘ ( 2  logb  𝑁 ) ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑁  ∈  ℝ+  →  ( ( ⌊ ‘ ( 2  logb  ( abs ‘ 𝑁 ) ) )  +  1 )  =  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) | 
						
							| 10 | 3 9 | eqtrd | ⊢ ( 𝑁  ∈  ℝ+  →  ( #b ‘ 𝑁 )  =  ( ( ⌊ ‘ ( 2  logb  𝑁 ) )  +  1 ) ) |