| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpne0 |
⊢ ( 𝑁 ∈ ℝ+ → 𝑁 ≠ 0 ) |
| 2 |
|
blenn0 |
⊢ ( ( 𝑁 ∈ ℝ+ ∧ 𝑁 ≠ 0 ) → ( #b ‘ 𝑁 ) = ( ( ⌊ ‘ ( 2 logb ( abs ‘ 𝑁 ) ) ) + 1 ) ) |
| 3 |
1 2
|
mpdan |
⊢ ( 𝑁 ∈ ℝ+ → ( #b ‘ 𝑁 ) = ( ( ⌊ ‘ ( 2 logb ( abs ‘ 𝑁 ) ) ) + 1 ) ) |
| 4 |
|
rpre |
⊢ ( 𝑁 ∈ ℝ+ → 𝑁 ∈ ℝ ) |
| 5 |
|
rpge0 |
⊢ ( 𝑁 ∈ ℝ+ → 0 ≤ 𝑁 ) |
| 6 |
4 5
|
absidd |
⊢ ( 𝑁 ∈ ℝ+ → ( abs ‘ 𝑁 ) = 𝑁 ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑁 ∈ ℝ+ → ( 2 logb ( abs ‘ 𝑁 ) ) = ( 2 logb 𝑁 ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑁 ∈ ℝ+ → ( ⌊ ‘ ( 2 logb ( abs ‘ 𝑁 ) ) ) = ( ⌊ ‘ ( 2 logb 𝑁 ) ) ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝑁 ∈ ℝ+ → ( ( ⌊ ‘ ( 2 logb ( abs ‘ 𝑁 ) ) ) + 1 ) = ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) |
| 10 |
3 9
|
eqtrd |
⊢ ( 𝑁 ∈ ℝ+ → ( #b ‘ 𝑁 ) = ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) |