Metamath Proof Explorer


Theorem rpge0

Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008)

Ref Expression
Assertion rpge0 ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 rpre ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ )
2 rpgt0 ( 𝐴 ∈ ℝ+ → 0 < 𝐴 )
3 0re 0 ∈ ℝ
4 ltle ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) )
5 3 4 mpan ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → 0 ≤ 𝐴 ) )
6 1 2 5 sylc ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 )