| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpne0 |  |-  ( N e. RR+ -> N =/= 0 ) | 
						
							| 2 |  | blenn0 |  |-  ( ( N e. RR+ /\ N =/= 0 ) -> ( #b ` N ) = ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) | 
						
							| 3 | 1 2 | mpdan |  |-  ( N e. RR+ -> ( #b ` N ) = ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) | 
						
							| 4 |  | rpre |  |-  ( N e. RR+ -> N e. RR ) | 
						
							| 5 |  | rpge0 |  |-  ( N e. RR+ -> 0 <_ N ) | 
						
							| 6 | 4 5 | absidd |  |-  ( N e. RR+ -> ( abs ` N ) = N ) | 
						
							| 7 | 6 | oveq2d |  |-  ( N e. RR+ -> ( 2 logb ( abs ` N ) ) = ( 2 logb N ) ) | 
						
							| 8 | 7 | fveq2d |  |-  ( N e. RR+ -> ( |_ ` ( 2 logb ( abs ` N ) ) ) = ( |_ ` ( 2 logb N ) ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( N e. RR+ -> ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) | 
						
							| 10 | 3 9 | eqtrd |  |-  ( N e. RR+ -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |