Metamath Proof Explorer


Theorem blen1b

Description: The binary length of a nonnegative integer is 1 if the integer is 0 or 1. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion blen1b N0#b N = 1 N=0N=1

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 blennn N#b N = log2N+1
3 2 eqeq1d N#b N = 1 log2N+1=1
4 2rp 2+
5 4 a1i N2+
6 nnrp NN+
7 1ne2 12
8 7 necomi 21
9 8 a1i N21
10 relogbcl 2+N+21log2N
11 5 6 9 10 syl3anc Nlog2N
12 11 flcld Nlog2N
13 12 zcnd Nlog2N
14 1cnd N1
15 13 14 14 addlsub Nlog2N+1=1log2N=11
16 1m1e0 11=0
17 16 a1i N11=0
18 17 eqeq2d Nlog2N=11log2N=0
19 0z 0
20 flbi log2N0log2N=00log2Nlog2N<0+1
21 11 19 20 sylancl Nlog2N=00log2Nlog2N<0+1
22 15 18 21 3bitrd Nlog2N+1=10log2Nlog2N<0+1
23 0p1e1 0+1=1
24 23 breq2i log2N<0+1log2N<1
25 24 anbi2i 0log2Nlog2N<0+10log2Nlog2N<1
26 nnlog2ge0lt1 NN=10log2Nlog2N<1
27 26 biimpar N0log2Nlog2N<1N=1
28 27 olcd N0log2Nlog2N<1N=0N=1
29 28 ex N0log2Nlog2N<1N=0N=1
30 25 29 biimtrid N0log2Nlog2N<0+1N=0N=1
31 22 30 sylbid Nlog2N+1=1N=0N=1
32 3 31 sylbid N#b N = 1 N=0N=1
33 orc N=0N=0N=1
34 33 a1d N=0#b N = 1 N=0N=1
35 32 34 jaoi NN=0#b N = 1 N=0N=1
36 1 35 sylbi N0#b N = 1 N=0N=1
37 fveq2 N=0#b N = #b 0
38 blen0 #b 0 = 1
39 37 38 eqtrdi N=0#b N = 1
40 fveq2 N=1#b N = #b 1
41 blen1 #b 1 = 1
42 40 41 eqtrdi N=1#b N = 1
43 39 42 jaoi N=0N=1#b N = 1
44 36 43 impbid1 N0#b N = 1 N=0N=1