Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
|- ( N e. { 0 , 1 } -> ( N = 0 \/ N = 1 ) ) |
2 |
|
2nn |
|- 2 e. NN |
3 |
|
0z |
|- 0 e. ZZ |
4 |
|
dig0 |
|- ( ( 2 e. NN /\ 0 e. ZZ ) -> ( 0 ( digit ` 2 ) 0 ) = 0 ) |
5 |
2 3 4
|
mp2an |
|- ( 0 ( digit ` 2 ) 0 ) = 0 |
6 |
|
oveq2 |
|- ( N = 0 -> ( 0 ( digit ` 2 ) N ) = ( 0 ( digit ` 2 ) 0 ) ) |
7 |
|
id |
|- ( N = 0 -> N = 0 ) |
8 |
5 6 7
|
3eqtr4a |
|- ( N = 0 -> ( 0 ( digit ` 2 ) N ) = N ) |
9 |
|
2z |
|- 2 e. ZZ |
10 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
11 |
|
0dig1 |
|- ( 2 e. ( ZZ>= ` 2 ) -> ( 0 ( digit ` 2 ) 1 ) = 1 ) |
12 |
9 10 11
|
mp2b |
|- ( 0 ( digit ` 2 ) 1 ) = 1 |
13 |
|
oveq2 |
|- ( N = 1 -> ( 0 ( digit ` 2 ) N ) = ( 0 ( digit ` 2 ) 1 ) ) |
14 |
|
id |
|- ( N = 1 -> N = 1 ) |
15 |
12 13 14
|
3eqtr4a |
|- ( N = 1 -> ( 0 ( digit ` 2 ) N ) = N ) |
16 |
8 15
|
jaoi |
|- ( ( N = 0 \/ N = 1 ) -> ( 0 ( digit ` 2 ) N ) = N ) |
17 |
1 16
|
syl |
|- ( N e. { 0 , 1 } -> ( 0 ( digit ` 2 ) N ) = N ) |