| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpri |
|- ( N e. { 0 , 1 } -> ( N = 0 \/ N = 1 ) ) |
| 2 |
|
2nn |
|- 2 e. NN |
| 3 |
|
0z |
|- 0 e. ZZ |
| 4 |
|
dig0 |
|- ( ( 2 e. NN /\ 0 e. ZZ ) -> ( 0 ( digit ` 2 ) 0 ) = 0 ) |
| 5 |
2 3 4
|
mp2an |
|- ( 0 ( digit ` 2 ) 0 ) = 0 |
| 6 |
|
oveq2 |
|- ( N = 0 -> ( 0 ( digit ` 2 ) N ) = ( 0 ( digit ` 2 ) 0 ) ) |
| 7 |
|
id |
|- ( N = 0 -> N = 0 ) |
| 8 |
5 6 7
|
3eqtr4a |
|- ( N = 0 -> ( 0 ( digit ` 2 ) N ) = N ) |
| 9 |
|
2z |
|- 2 e. ZZ |
| 10 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 11 |
|
0dig1 |
|- ( 2 e. ( ZZ>= ` 2 ) -> ( 0 ( digit ` 2 ) 1 ) = 1 ) |
| 12 |
9 10 11
|
mp2b |
|- ( 0 ( digit ` 2 ) 1 ) = 1 |
| 13 |
|
oveq2 |
|- ( N = 1 -> ( 0 ( digit ` 2 ) N ) = ( 0 ( digit ` 2 ) 1 ) ) |
| 14 |
|
id |
|- ( N = 1 -> N = 1 ) |
| 15 |
12 13 14
|
3eqtr4a |
|- ( N = 1 -> ( 0 ( digit ` 2 ) N ) = N ) |
| 16 |
8 15
|
jaoi |
|- ( ( N = 0 \/ N = 1 ) -> ( 0 ( digit ` 2 ) N ) = N ) |
| 17 |
1 16
|
syl |
|- ( N e. { 0 , 1 } -> ( 0 ( digit ` 2 ) N ) = N ) |