| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpri |  |-  ( N e. { 0 , 1 } -> ( N = 0 \/ N = 1 ) ) | 
						
							| 2 |  | 2nn |  |-  2 e. NN | 
						
							| 3 |  | 0z |  |-  0 e. ZZ | 
						
							| 4 |  | dig0 |  |-  ( ( 2 e. NN /\ 0 e. ZZ ) -> ( 0 ( digit ` 2 ) 0 ) = 0 ) | 
						
							| 5 | 2 3 4 | mp2an |  |-  ( 0 ( digit ` 2 ) 0 ) = 0 | 
						
							| 6 |  | oveq2 |  |-  ( N = 0 -> ( 0 ( digit ` 2 ) N ) = ( 0 ( digit ` 2 ) 0 ) ) | 
						
							| 7 |  | id |  |-  ( N = 0 -> N = 0 ) | 
						
							| 8 | 5 6 7 | 3eqtr4a |  |-  ( N = 0 -> ( 0 ( digit ` 2 ) N ) = N ) | 
						
							| 9 |  | 2z |  |-  2 e. ZZ | 
						
							| 10 |  | uzid |  |-  ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) | 
						
							| 11 |  | 0dig1 |  |-  ( 2 e. ( ZZ>= ` 2 ) -> ( 0 ( digit ` 2 ) 1 ) = 1 ) | 
						
							| 12 | 9 10 11 | mp2b |  |-  ( 0 ( digit ` 2 ) 1 ) = 1 | 
						
							| 13 |  | oveq2 |  |-  ( N = 1 -> ( 0 ( digit ` 2 ) N ) = ( 0 ( digit ` 2 ) 1 ) ) | 
						
							| 14 |  | id |  |-  ( N = 1 -> N = 1 ) | 
						
							| 15 | 12 13 14 | 3eqtr4a |  |-  ( N = 1 -> ( 0 ( digit ` 2 ) N ) = N ) | 
						
							| 16 | 8 15 | jaoi |  |-  ( ( N = 0 \/ N = 1 ) -> ( 0 ( digit ` 2 ) N ) = N ) | 
						
							| 17 | 1 16 | syl |  |-  ( N e. { 0 , 1 } -> ( 0 ( digit ` 2 ) N ) = N ) |