| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elpri | ⊢ ( 𝑁  ∈  { 0 ,  1 }  →  ( 𝑁  =  0  ∨  𝑁  =  1 ) ) | 
						
							| 2 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 3 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 4 |  | dig0 | ⊢ ( ( 2  ∈  ℕ  ∧  0  ∈  ℤ )  →  ( 0 ( digit ‘ 2 ) 0 )  =  0 ) | 
						
							| 5 | 2 3 4 | mp2an | ⊢ ( 0 ( digit ‘ 2 ) 0 )  =  0 | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  ( 0 ( digit ‘ 2 ) 0 ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑁  =  0  →  𝑁  =  0 ) | 
						
							| 8 | 5 6 7 | 3eqtr4a | ⊢ ( 𝑁  =  0  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  𝑁 ) | 
						
							| 9 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 10 |  | uzid | ⊢ ( 2  ∈  ℤ  →  2  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 11 |  | 0dig1 | ⊢ ( 2  ∈  ( ℤ≥ ‘ 2 )  →  ( 0 ( digit ‘ 2 ) 1 )  =  1 ) | 
						
							| 12 | 9 10 11 | mp2b | ⊢ ( 0 ( digit ‘ 2 ) 1 )  =  1 | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑁  =  1  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  ( 0 ( digit ‘ 2 ) 1 ) ) | 
						
							| 14 |  | id | ⊢ ( 𝑁  =  1  →  𝑁  =  1 ) | 
						
							| 15 | 12 13 14 | 3eqtr4a | ⊢ ( 𝑁  =  1  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  𝑁 ) | 
						
							| 16 | 8 15 | jaoi | ⊢ ( ( 𝑁  =  0  ∨  𝑁  =  1 )  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  𝑁 ) | 
						
							| 17 | 1 16 | syl | ⊢ ( 𝑁  ∈  { 0 ,  1 }  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  𝑁 ) |