Step |
Hyp |
Ref |
Expression |
1 |
|
elpri |
⊢ ( 𝑁 ∈ { 0 , 1 } → ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
2 |
|
2nn |
⊢ 2 ∈ ℕ |
3 |
|
0z |
⊢ 0 ∈ ℤ |
4 |
|
dig0 |
⊢ ( ( 2 ∈ ℕ ∧ 0 ∈ ℤ ) → ( 0 ( digit ‘ 2 ) 0 ) = 0 ) |
5 |
2 3 4
|
mp2an |
⊢ ( 0 ( digit ‘ 2 ) 0 ) = 0 |
6 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 0 ( digit ‘ 2 ) 𝑁 ) = ( 0 ( digit ‘ 2 ) 0 ) ) |
7 |
|
id |
⊢ ( 𝑁 = 0 → 𝑁 = 0 ) |
8 |
5 6 7
|
3eqtr4a |
⊢ ( 𝑁 = 0 → ( 0 ( digit ‘ 2 ) 𝑁 ) = 𝑁 ) |
9 |
|
2z |
⊢ 2 ∈ ℤ |
10 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
11 |
|
0dig1 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 2 ) → ( 0 ( digit ‘ 2 ) 1 ) = 1 ) |
12 |
9 10 11
|
mp2b |
⊢ ( 0 ( digit ‘ 2 ) 1 ) = 1 |
13 |
|
oveq2 |
⊢ ( 𝑁 = 1 → ( 0 ( digit ‘ 2 ) 𝑁 ) = ( 0 ( digit ‘ 2 ) 1 ) ) |
14 |
|
id |
⊢ ( 𝑁 = 1 → 𝑁 = 1 ) |
15 |
12 13 14
|
3eqtr4a |
⊢ ( 𝑁 = 1 → ( 0 ( digit ‘ 2 ) 𝑁 ) = 𝑁 ) |
16 |
8 15
|
jaoi |
⊢ ( ( 𝑁 = 0 ∨ 𝑁 = 1 ) → ( 0 ( digit ‘ 2 ) 𝑁 ) = 𝑁 ) |
17 |
1 16
|
syl |
⊢ ( 𝑁 ∈ { 0 , 1 } → ( 0 ( digit ‘ 2 ) 𝑁 ) = 𝑁 ) |