Metamath Proof Explorer


Theorem 0dig1

Description: The 0 th digit of 1 is 1 in any positional system. (Contributed by AV, 28-May-2020)

Ref Expression
Assertion 0dig1 ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( 0 ( digit ‘ 𝐵 ) 1 ) = 1 )

Proof

Step Hyp Ref Expression
1 0z 0 ∈ ℤ
2 dig1 ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 0 ∈ ℤ ) → ( 0 ( digit ‘ 𝐵 ) 1 ) = if ( 0 = 0 , 1 , 0 ) )
3 1 2 mpan2 ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( 0 ( digit ‘ 𝐵 ) 1 ) = if ( 0 = 0 , 1 , 0 ) )
4 eqid 0 = 0
5 4 iftruei if ( 0 = 0 , 1 , 0 ) = 1
6 3 5 eqtrdi ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( 0 ( digit ‘ 𝐵 ) 1 ) = 1 )