| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelcn | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ∈  ℂ ) | 
						
							| 2 | 1 | exp0d | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐵 ↑ 0 )  =  1 ) | 
						
							| 3 | 2 | eqcomd | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  1  =  ( 𝐵 ↑ 0 ) ) | 
						
							| 4 | 3 | ad2antrl | ⊢ ( ( 0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  1  =  ( 𝐵 ↑ 0 ) ) | 
						
							| 5 | 4 | oveq2d | ⊢ ( ( 0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 1 )  =  ( 𝐾 ( digit ‘ 𝐵 ) ( 𝐵 ↑ 0 ) ) ) | 
						
							| 6 |  | simprl | ⊢ ( ( 0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  𝐵  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ )  →  𝐾  ∈  ℤ ) | 
						
							| 8 | 7 | anim2i | ⊢ ( ( 0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  ( 0  ≤  𝐾  ∧  𝐾  ∈  ℤ ) ) | 
						
							| 9 | 8 | ancomd | ⊢ ( ( 0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  ( 𝐾  ∈  ℤ  ∧  0  ≤  𝐾 ) ) | 
						
							| 10 |  | elnn0z | ⊢ ( 𝐾  ∈  ℕ0  ↔  ( 𝐾  ∈  ℤ  ∧  0  ≤  𝐾 ) ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  𝐾  ∈  ℕ0 ) | 
						
							| 12 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 13 | 12 | a1i | ⊢ ( ( 0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  0  ∈  ℕ0 ) | 
						
							| 14 |  | digexp | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℕ0  ∧  0  ∈  ℕ0 )  →  ( 𝐾 ( digit ‘ 𝐵 ) ( 𝐵 ↑ 0 ) )  =  if ( 𝐾  =  0 ,  1 ,  0 ) ) | 
						
							| 15 | 6 11 13 14 | syl3anc | ⊢ ( ( 0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) ( 𝐵 ↑ 0 ) )  =  if ( 𝐾  =  0 ,  1 ,  0 ) ) | 
						
							| 16 | 5 15 | eqtrd | ⊢ ( ( 0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 1 )  =  if ( 𝐾  =  0 ,  1 ,  0 ) ) | 
						
							| 17 |  | eluz2nn | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ∈  ℕ ) | 
						
							| 18 | 17 | ad2antrl | ⊢ ( ( ¬  0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  𝐵  ∈  ℕ ) | 
						
							| 19 |  | simprr | ⊢ ( ( ¬  0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  𝐾  ∈  ℤ ) | 
						
							| 20 |  | nn0ge0 | ⊢ ( 𝐾  ∈  ℕ0  →  0  ≤  𝐾 ) | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ )  →  ( 𝐾  ∈  ℕ0  →  0  ≤  𝐾 ) ) | 
						
							| 22 | 21 | con3d | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ )  →  ( ¬  0  ≤  𝐾  →  ¬  𝐾  ∈  ℕ0 ) ) | 
						
							| 23 | 22 | impcom | ⊢ ( ( ¬  0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  ¬  𝐾  ∈  ℕ0 ) | 
						
							| 24 | 19 23 | eldifd | ⊢ ( ( ¬  0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  𝐾  ∈  ( ℤ  ∖  ℕ0 ) ) | 
						
							| 25 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 26 | 25 | a1i | ⊢ ( ( ¬  0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  1  ∈  ℕ0 ) | 
						
							| 27 |  | dignn0fr | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐾  ∈  ( ℤ  ∖  ℕ0 )  ∧  1  ∈  ℕ0 )  →  ( 𝐾 ( digit ‘ 𝐵 ) 1 )  =  0 ) | 
						
							| 28 | 18 24 26 27 | syl3anc | ⊢ ( ( ¬  0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 1 )  =  0 ) | 
						
							| 29 |  | 0le0 | ⊢ 0  ≤  0 | 
						
							| 30 |  | breq2 | ⊢ ( 𝐾  =  0  →  ( 0  ≤  𝐾  ↔  0  ≤  0 ) ) | 
						
							| 31 | 29 30 | mpbiri | ⊢ ( 𝐾  =  0  →  0  ≤  𝐾 ) | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ )  →  ( 𝐾  =  0  →  0  ≤  𝐾 ) ) | 
						
							| 33 | 32 | con3d | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ )  →  ( ¬  0  ≤  𝐾  →  ¬  𝐾  =  0 ) ) | 
						
							| 34 | 33 | impcom | ⊢ ( ( ¬  0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  ¬  𝐾  =  0 ) | 
						
							| 35 | 34 | iffalsed | ⊢ ( ( ¬  0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  if ( 𝐾  =  0 ,  1 ,  0 )  =  0 ) | 
						
							| 36 | 28 35 | eqtr4d | ⊢ ( ( ¬  0  ≤  𝐾  ∧  ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ ) )  →  ( 𝐾 ( digit ‘ 𝐵 ) 1 )  =  if ( 𝐾  =  0 ,  1 ,  0 ) ) | 
						
							| 37 | 16 36 | pm2.61ian | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝐾  ∈  ℤ )  →  ( 𝐾 ( digit ‘ 𝐵 ) 1 )  =  if ( 𝐾  =  0 ,  1 ,  0 ) ) |