Metamath Proof Explorer


Theorem dig1

Description: All but one digits of 1 are 0. (Contributed by AV, 24-May-2020)

Ref Expression
Assertion dig1 B2KKdigitB1=ifK=010

Proof

Step Hyp Ref Expression
1 eluzelcn B2B
2 1 exp0d B2B0=1
3 2 eqcomd B21=B0
4 3 ad2antrl 0KB2K1=B0
5 4 oveq2d 0KB2KKdigitB1=KdigitBB0
6 simprl 0KB2KB2
7 simpr B2KK
8 7 anim2i 0KB2K0KK
9 8 ancomd 0KB2KK0K
10 elnn0z K0K0K
11 9 10 sylibr 0KB2KK0
12 0nn0 00
13 12 a1i 0KB2K00
14 digexp B2K000KdigitBB0=ifK=010
15 6 11 13 14 syl3anc 0KB2KKdigitBB0=ifK=010
16 5 15 eqtrd 0KB2KKdigitB1=ifK=010
17 eluz2nn B2B
18 17 ad2antrl ¬0KB2KB
19 simprr ¬0KB2KK
20 nn0ge0 K00K
21 20 a1i B2KK00K
22 21 con3d B2K¬0K¬K0
23 22 impcom ¬0KB2K¬K0
24 19 23 eldifd ¬0KB2KK0
25 1nn0 10
26 25 a1i ¬0KB2K10
27 dignn0fr BK010KdigitB1=0
28 18 24 26 27 syl3anc ¬0KB2KKdigitB1=0
29 0le0 00
30 breq2 K=00K00
31 29 30 mpbiri K=00K
32 31 a1i B2KK=00K
33 32 con3d B2K¬0K¬K=0
34 33 impcom ¬0KB2K¬K=0
35 34 iffalsed ¬0KB2KifK=010=0
36 28 35 eqtr4d ¬0KB2KKdigitB1=ifK=010
37 16 36 pm2.61ian B2KKdigitB1=ifK=010