Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelcn |
|
2 |
|
eluz2nn |
|
3 |
2
|
nnne0d |
|
4 |
1 3
|
jca |
|
5 |
4
|
3ad2ant1 |
|
6 |
|
nn0z |
|
7 |
|
nn0z |
|
8 |
6 7
|
anim12i |
|
9 |
8
|
ancomd |
|
10 |
9
|
3adant1 |
|
11 |
|
expsub |
|
12 |
5 10 11
|
syl2anc |
|
13 |
12
|
eqcomd |
|
14 |
13
|
fveq2d |
|
15 |
14
|
oveq1d |
|
16 |
2
|
3ad2ant1 |
|
17 |
|
simp2 |
|
18 |
|
eluzelre |
|
19 |
|
reexpcl |
|
20 |
18 19
|
sylan |
|
21 |
18
|
adantr |
|
22 |
|
simpr |
|
23 |
|
eluzge2nn0 |
|
24 |
23
|
nn0ge0d |
|
25 |
24
|
adantr |
|
26 |
21 22 25
|
expge0d |
|
27 |
20 26
|
jca |
|
28 |
27
|
3adant2 |
|
29 |
|
elrege0 |
|
30 |
28 29
|
sylibr |
|
31 |
|
nn0digval |
|
32 |
16 17 30 31
|
syl3anc |
|
33 |
|
simpr |
|
34 |
33
|
eqcomd |
|
35 |
|
nn0cn |
|
36 |
35
|
3ad2ant3 |
|
37 |
|
nn0cn |
|
38 |
37
|
3ad2ant2 |
|
39 |
36 38
|
subeq0ad |
|
40 |
39
|
adantr |
|
41 |
34 40
|
mpbird |
|
42 |
41
|
oveq2d |
|
43 |
1
|
exp0d |
|
44 |
43
|
3ad2ant1 |
|
45 |
44
|
adantr |
|
46 |
42 45
|
eqtrd |
|
47 |
46
|
fveq2d |
|
48 |
|
1zzd |
|
49 |
|
flid |
|
50 |
48 49
|
syl |
|
51 |
47 50
|
eqtrd |
|
52 |
51
|
oveq1d |
|
53 |
|
eluz2gt1 |
|
54 |
|
1mod |
|
55 |
18 53 54
|
syl2anc |
|
56 |
55
|
3ad2ant1 |
|
57 |
56
|
adantr |
|
58 |
52 57
|
eqtr2d |
|
59 |
|
simprl1 |
|
60 |
7
|
adantl |
|
61 |
6
|
adantr |
|
62 |
60 61
|
zsubcld |
|
63 |
62
|
3adant1 |
|
64 |
63
|
ad2antrl |
|
65 |
|
nn0re |
|
66 |
65
|
3ad2ant3 |
|
67 |
|
nn0re |
|
68 |
67
|
3ad2ant2 |
|
69 |
66 68
|
sublt0d |
|
70 |
69
|
biimprd |
|
71 |
70
|
adantr |
|
72 |
71
|
impcom |
|
73 |
|
expnegico01 |
|
74 |
59 64 72 73
|
syl3anc |
|
75 |
|
ico01fl0 |
|
76 |
74 75
|
syl |
|
77 |
76
|
oveq1d |
|
78 |
2
|
nnrpd |
|
79 |
|
0mod |
|
80 |
78 79
|
syl |
|
81 |
80
|
3ad2ant1 |
|
82 |
81
|
ad2antrl |
|
83 |
77 82
|
eqtrd |
|
84 |
|
eluzelz |
|
85 |
84
|
3ad2ant1 |
|
86 |
85
|
ad2antrl |
|
87 |
67 65
|
anim12i |
|
88 |
|
lenlt |
|
89 |
88
|
bicomd |
|
90 |
87 89
|
syl |
|
91 |
90
|
biimpd |
|
92 |
91
|
3adant1 |
|
93 |
92
|
adantr |
|
94 |
93
|
impcom |
|
95 |
|
3simpc |
|
96 |
95
|
ad2antrl |
|
97 |
|
nn0sub |
|
98 |
96 97
|
syl |
|
99 |
94 98
|
mpbid |
|
100 |
|
zexpcl |
|
101 |
86 99 100
|
syl2anc |
|
102 |
|
flid |
|
103 |
101 102
|
syl |
|
104 |
103
|
oveq1d |
|
105 |
1
|
3ad2ant1 |
|
106 |
3
|
3ad2ant1 |
|
107 |
105 106 63
|
expm1d |
|
108 |
107
|
eqcomd |
|
109 |
108
|
ad2antrl |
|
110 |
|
pm4.56 |
|
111 |
87
|
3adant1 |
|
112 |
|
axlttri |
|
113 |
111 112
|
syl |
|
114 |
113
|
biimprd |
|
115 |
110 114
|
syl5bi |
|
116 |
115
|
expdimp |
|
117 |
116
|
impcom |
|
118 |
8
|
3adant1 |
|
119 |
118
|
ad2antrl |
|
120 |
|
znnsub |
|
121 |
119 120
|
syl |
|
122 |
117 121
|
mpbid |
|
123 |
|
nnm1nn0 |
|
124 |
122 123
|
syl |
|
125 |
|
zexpcl |
|
126 |
86 124 125
|
syl2anc |
|
127 |
109 126
|
eqeltrd |
|
128 |
18
|
3ad2ant1 |
|
129 |
128 106 63
|
reexpclzd |
|
130 |
78
|
3ad2ant1 |
|
131 |
|
mod0 |
|
132 |
129 130 131
|
syl2anc |
|
133 |
132
|
ad2antrl |
|
134 |
127 133
|
mpbird |
|
135 |
104 134
|
eqtrd |
|
136 |
83 135
|
pm2.61ian |
|
137 |
136
|
eqcomd |
|
138 |
58 137
|
ifeqda |
|
139 |
15 32 138
|
3eqtr4d |
|