| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelcn |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. CC ) | 
						
							| 2 |  | eluz2nn |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. NN ) | 
						
							| 3 | 2 | nnne0d |  |-  ( B e. ( ZZ>= ` 2 ) -> B =/= 0 ) | 
						
							| 4 | 1 3 | jca |  |-  ( B e. ( ZZ>= ` 2 ) -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 5 | 4 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 6 |  | nn0z |  |-  ( K e. NN0 -> K e. ZZ ) | 
						
							| 7 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 8 | 6 7 | anim12i |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( K e. ZZ /\ N e. ZZ ) ) | 
						
							| 9 | 8 | ancomd |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( N e. ZZ /\ K e. ZZ ) ) | 
						
							| 10 | 9 | 3adant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( N e. ZZ /\ K e. ZZ ) ) | 
						
							| 11 |  | expsub |  |-  ( ( ( B e. CC /\ B =/= 0 ) /\ ( N e. ZZ /\ K e. ZZ ) ) -> ( B ^ ( N - K ) ) = ( ( B ^ N ) / ( B ^ K ) ) ) | 
						
							| 12 | 5 10 11 | syl2anc |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( B ^ ( N - K ) ) = ( ( B ^ N ) / ( B ^ K ) ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( ( B ^ N ) / ( B ^ K ) ) = ( B ^ ( N - K ) ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( |_ ` ( ( B ^ N ) / ( B ^ K ) ) ) = ( |_ ` ( B ^ ( N - K ) ) ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( ( |_ ` ( ( B ^ N ) / ( B ^ K ) ) ) mod B ) = ( ( |_ ` ( B ^ ( N - K ) ) ) mod B ) ) | 
						
							| 16 | 2 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> B e. NN ) | 
						
							| 17 |  | simp2 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> K e. NN0 ) | 
						
							| 18 |  | eluzelre |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. RR ) | 
						
							| 19 |  | reexpcl |  |-  ( ( B e. RR /\ N e. NN0 ) -> ( B ^ N ) e. RR ) | 
						
							| 20 | 18 19 | sylan |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( B ^ N ) e. RR ) | 
						
							| 21 | 18 | adantr |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> B e. RR ) | 
						
							| 22 |  | simpr |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> N e. NN0 ) | 
						
							| 23 |  | eluzge2nn0 |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. NN0 ) | 
						
							| 24 | 23 | nn0ge0d |  |-  ( B e. ( ZZ>= ` 2 ) -> 0 <_ B ) | 
						
							| 25 | 24 | adantr |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> 0 <_ B ) | 
						
							| 26 | 21 22 25 | expge0d |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> 0 <_ ( B ^ N ) ) | 
						
							| 27 | 20 26 | jca |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( ( B ^ N ) e. RR /\ 0 <_ ( B ^ N ) ) ) | 
						
							| 28 | 27 | 3adant2 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( ( B ^ N ) e. RR /\ 0 <_ ( B ^ N ) ) ) | 
						
							| 29 |  | elrege0 |  |-  ( ( B ^ N ) e. ( 0 [,) +oo ) <-> ( ( B ^ N ) e. RR /\ 0 <_ ( B ^ N ) ) ) | 
						
							| 30 | 28 29 | sylibr |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( B ^ N ) e. ( 0 [,) +oo ) ) | 
						
							| 31 |  | nn0digval |  |-  ( ( B e. NN /\ K e. NN0 /\ ( B ^ N ) e. ( 0 [,) +oo ) ) -> ( K ( digit ` B ) ( B ^ N ) ) = ( ( |_ ` ( ( B ^ N ) / ( B ^ K ) ) ) mod B ) ) | 
						
							| 32 | 16 17 30 31 | syl3anc |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( K ( digit ` B ) ( B ^ N ) ) = ( ( |_ ` ( ( B ^ N ) / ( B ^ K ) ) ) mod B ) ) | 
						
							| 33 |  | simpr |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> K = N ) | 
						
							| 34 | 33 | eqcomd |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> N = K ) | 
						
							| 35 |  | nn0cn |  |-  ( N e. NN0 -> N e. CC ) | 
						
							| 36 | 35 | 3ad2ant3 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> N e. CC ) | 
						
							| 37 |  | nn0cn |  |-  ( K e. NN0 -> K e. CC ) | 
						
							| 38 | 37 | 3ad2ant2 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> K e. CC ) | 
						
							| 39 | 36 38 | subeq0ad |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( ( N - K ) = 0 <-> N = K ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> ( ( N - K ) = 0 <-> N = K ) ) | 
						
							| 41 | 34 40 | mpbird |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> ( N - K ) = 0 ) | 
						
							| 42 | 41 | oveq2d |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> ( B ^ ( N - K ) ) = ( B ^ 0 ) ) | 
						
							| 43 | 1 | exp0d |  |-  ( B e. ( ZZ>= ` 2 ) -> ( B ^ 0 ) = 1 ) | 
						
							| 44 | 43 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( B ^ 0 ) = 1 ) | 
						
							| 45 | 44 | adantr |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> ( B ^ 0 ) = 1 ) | 
						
							| 46 | 42 45 | eqtrd |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> ( B ^ ( N - K ) ) = 1 ) | 
						
							| 47 | 46 | fveq2d |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> ( |_ ` ( B ^ ( N - K ) ) ) = ( |_ ` 1 ) ) | 
						
							| 48 |  | 1zzd |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> 1 e. ZZ ) | 
						
							| 49 |  | flid |  |-  ( 1 e. ZZ -> ( |_ ` 1 ) = 1 ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> ( |_ ` 1 ) = 1 ) | 
						
							| 51 | 47 50 | eqtrd |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> ( |_ ` ( B ^ ( N - K ) ) ) = 1 ) | 
						
							| 52 | 51 | oveq1d |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> ( ( |_ ` ( B ^ ( N - K ) ) ) mod B ) = ( 1 mod B ) ) | 
						
							| 53 |  | eluz2gt1 |  |-  ( B e. ( ZZ>= ` 2 ) -> 1 < B ) | 
						
							| 54 |  | 1mod |  |-  ( ( B e. RR /\ 1 < B ) -> ( 1 mod B ) = 1 ) | 
						
							| 55 | 18 53 54 | syl2anc |  |-  ( B e. ( ZZ>= ` 2 ) -> ( 1 mod B ) = 1 ) | 
						
							| 56 | 55 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( 1 mod B ) = 1 ) | 
						
							| 57 | 56 | adantr |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> ( 1 mod B ) = 1 ) | 
						
							| 58 | 52 57 | eqtr2d |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ K = N ) -> 1 = ( ( |_ ` ( B ^ ( N - K ) ) ) mod B ) ) | 
						
							| 59 |  | simprl1 |  |-  ( ( N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> B e. ( ZZ>= ` 2 ) ) | 
						
							| 60 | 7 | adantl |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> N e. ZZ ) | 
						
							| 61 | 6 | adantr |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> K e. ZZ ) | 
						
							| 62 | 60 61 | zsubcld |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( N - K ) e. ZZ ) | 
						
							| 63 | 62 | 3adant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( N - K ) e. ZZ ) | 
						
							| 64 | 63 | ad2antrl |  |-  ( ( N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( N - K ) e. ZZ ) | 
						
							| 65 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 66 | 65 | 3ad2ant3 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> N e. RR ) | 
						
							| 67 |  | nn0re |  |-  ( K e. NN0 -> K e. RR ) | 
						
							| 68 | 67 | 3ad2ant2 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> K e. RR ) | 
						
							| 69 | 66 68 | sublt0d |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( ( N - K ) < 0 <-> N < K ) ) | 
						
							| 70 | 69 | biimprd |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( N < K -> ( N - K ) < 0 ) ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) -> ( N < K -> ( N - K ) < 0 ) ) | 
						
							| 72 | 71 | impcom |  |-  ( ( N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( N - K ) < 0 ) | 
						
							| 73 |  | expnegico01 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ ( N - K ) e. ZZ /\ ( N - K ) < 0 ) -> ( B ^ ( N - K ) ) e. ( 0 [,) 1 ) ) | 
						
							| 74 | 59 64 72 73 | syl3anc |  |-  ( ( N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( B ^ ( N - K ) ) e. ( 0 [,) 1 ) ) | 
						
							| 75 |  | ico01fl0 |  |-  ( ( B ^ ( N - K ) ) e. ( 0 [,) 1 ) -> ( |_ ` ( B ^ ( N - K ) ) ) = 0 ) | 
						
							| 76 | 74 75 | syl |  |-  ( ( N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( |_ ` ( B ^ ( N - K ) ) ) = 0 ) | 
						
							| 77 | 76 | oveq1d |  |-  ( ( N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( ( |_ ` ( B ^ ( N - K ) ) ) mod B ) = ( 0 mod B ) ) | 
						
							| 78 | 2 | nnrpd |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. RR+ ) | 
						
							| 79 |  | 0mod |  |-  ( B e. RR+ -> ( 0 mod B ) = 0 ) | 
						
							| 80 | 78 79 | syl |  |-  ( B e. ( ZZ>= ` 2 ) -> ( 0 mod B ) = 0 ) | 
						
							| 81 | 80 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( 0 mod B ) = 0 ) | 
						
							| 82 | 81 | ad2antrl |  |-  ( ( N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( 0 mod B ) = 0 ) | 
						
							| 83 | 77 82 | eqtrd |  |-  ( ( N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( ( |_ ` ( B ^ ( N - K ) ) ) mod B ) = 0 ) | 
						
							| 84 |  | eluzelz |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. ZZ ) | 
						
							| 85 | 84 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> B e. ZZ ) | 
						
							| 86 | 85 | ad2antrl |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> B e. ZZ ) | 
						
							| 87 | 67 65 | anim12i |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( K e. RR /\ N e. RR ) ) | 
						
							| 88 |  | lenlt |  |-  ( ( K e. RR /\ N e. RR ) -> ( K <_ N <-> -. N < K ) ) | 
						
							| 89 | 88 | bicomd |  |-  ( ( K e. RR /\ N e. RR ) -> ( -. N < K <-> K <_ N ) ) | 
						
							| 90 | 87 89 | syl |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( -. N < K <-> K <_ N ) ) | 
						
							| 91 | 90 | biimpd |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( -. N < K -> K <_ N ) ) | 
						
							| 92 | 91 | 3adant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( -. N < K -> K <_ N ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) -> ( -. N < K -> K <_ N ) ) | 
						
							| 94 | 93 | impcom |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> K <_ N ) | 
						
							| 95 |  | 3simpc |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( K e. NN0 /\ N e. NN0 ) ) | 
						
							| 96 | 95 | ad2antrl |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( K e. NN0 /\ N e. NN0 ) ) | 
						
							| 97 |  | nn0sub |  |-  ( ( K e. NN0 /\ N e. NN0 ) -> ( K <_ N <-> ( N - K ) e. NN0 ) ) | 
						
							| 98 | 96 97 | syl |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( K <_ N <-> ( N - K ) e. NN0 ) ) | 
						
							| 99 | 94 98 | mpbid |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( N - K ) e. NN0 ) | 
						
							| 100 |  | zexpcl |  |-  ( ( B e. ZZ /\ ( N - K ) e. NN0 ) -> ( B ^ ( N - K ) ) e. ZZ ) | 
						
							| 101 | 86 99 100 | syl2anc |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( B ^ ( N - K ) ) e. ZZ ) | 
						
							| 102 |  | flid |  |-  ( ( B ^ ( N - K ) ) e. ZZ -> ( |_ ` ( B ^ ( N - K ) ) ) = ( B ^ ( N - K ) ) ) | 
						
							| 103 | 101 102 | syl |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( |_ ` ( B ^ ( N - K ) ) ) = ( B ^ ( N - K ) ) ) | 
						
							| 104 | 103 | oveq1d |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( ( |_ ` ( B ^ ( N - K ) ) ) mod B ) = ( ( B ^ ( N - K ) ) mod B ) ) | 
						
							| 105 | 1 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> B e. CC ) | 
						
							| 106 | 3 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> B =/= 0 ) | 
						
							| 107 | 105 106 63 | expm1d |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( B ^ ( ( N - K ) - 1 ) ) = ( ( B ^ ( N - K ) ) / B ) ) | 
						
							| 108 | 107 | eqcomd |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( ( B ^ ( N - K ) ) / B ) = ( B ^ ( ( N - K ) - 1 ) ) ) | 
						
							| 109 | 108 | ad2antrl |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( ( B ^ ( N - K ) ) / B ) = ( B ^ ( ( N - K ) - 1 ) ) ) | 
						
							| 110 |  | pm4.56 |  |-  ( ( -. K = N /\ -. N < K ) <-> -. ( K = N \/ N < K ) ) | 
						
							| 111 | 87 | 3adant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( K e. RR /\ N e. RR ) ) | 
						
							| 112 |  | axlttri |  |-  ( ( K e. RR /\ N e. RR ) -> ( K < N <-> -. ( K = N \/ N < K ) ) ) | 
						
							| 113 | 111 112 | syl |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( K < N <-> -. ( K = N \/ N < K ) ) ) | 
						
							| 114 | 113 | biimprd |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( -. ( K = N \/ N < K ) -> K < N ) ) | 
						
							| 115 | 110 114 | biimtrid |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( ( -. K = N /\ -. N < K ) -> K < N ) ) | 
						
							| 116 | 115 | expdimp |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) -> ( -. N < K -> K < N ) ) | 
						
							| 117 | 116 | impcom |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> K < N ) | 
						
							| 118 | 8 | 3adant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( K e. ZZ /\ N e. ZZ ) ) | 
						
							| 119 | 118 | ad2antrl |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( K e. ZZ /\ N e. ZZ ) ) | 
						
							| 120 |  | znnsub |  |-  ( ( K e. ZZ /\ N e. ZZ ) -> ( K < N <-> ( N - K ) e. NN ) ) | 
						
							| 121 | 119 120 | syl |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( K < N <-> ( N - K ) e. NN ) ) | 
						
							| 122 | 117 121 | mpbid |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( N - K ) e. NN ) | 
						
							| 123 |  | nnm1nn0 |  |-  ( ( N - K ) e. NN -> ( ( N - K ) - 1 ) e. NN0 ) | 
						
							| 124 | 122 123 | syl |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( ( N - K ) - 1 ) e. NN0 ) | 
						
							| 125 |  | zexpcl |  |-  ( ( B e. ZZ /\ ( ( N - K ) - 1 ) e. NN0 ) -> ( B ^ ( ( N - K ) - 1 ) ) e. ZZ ) | 
						
							| 126 | 86 124 125 | syl2anc |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( B ^ ( ( N - K ) - 1 ) ) e. ZZ ) | 
						
							| 127 | 109 126 | eqeltrd |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( ( B ^ ( N - K ) ) / B ) e. ZZ ) | 
						
							| 128 | 18 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> B e. RR ) | 
						
							| 129 | 128 106 63 | reexpclzd |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( B ^ ( N - K ) ) e. RR ) | 
						
							| 130 | 78 | 3ad2ant1 |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> B e. RR+ ) | 
						
							| 131 |  | mod0 |  |-  ( ( ( B ^ ( N - K ) ) e. RR /\ B e. RR+ ) -> ( ( ( B ^ ( N - K ) ) mod B ) = 0 <-> ( ( B ^ ( N - K ) ) / B ) e. ZZ ) ) | 
						
							| 132 | 129 130 131 | syl2anc |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( ( ( B ^ ( N - K ) ) mod B ) = 0 <-> ( ( B ^ ( N - K ) ) / B ) e. ZZ ) ) | 
						
							| 133 | 132 | ad2antrl |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( ( ( B ^ ( N - K ) ) mod B ) = 0 <-> ( ( B ^ ( N - K ) ) / B ) e. ZZ ) ) | 
						
							| 134 | 127 133 | mpbird |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( ( B ^ ( N - K ) ) mod B ) = 0 ) | 
						
							| 135 | 104 134 | eqtrd |  |-  ( ( -. N < K /\ ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) ) -> ( ( |_ ` ( B ^ ( N - K ) ) ) mod B ) = 0 ) | 
						
							| 136 | 83 135 | pm2.61ian |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) -> ( ( |_ ` ( B ^ ( N - K ) ) ) mod B ) = 0 ) | 
						
							| 137 | 136 | eqcomd |  |-  ( ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) /\ -. K = N ) -> 0 = ( ( |_ ` ( B ^ ( N - K ) ) ) mod B ) ) | 
						
							| 138 | 58 137 | ifeqda |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> if ( K = N , 1 , 0 ) = ( ( |_ ` ( B ^ ( N - K ) ) ) mod B ) ) | 
						
							| 139 | 15 32 138 | 3eqtr4d |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ K e. NN0 /\ N e. NN0 ) -> ( K ( digit ` B ) ( B ^ N ) ) = if ( K = N , 1 , 0 ) ) |