| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nn0re | 
							 |-  ( M e. NN0 -> M e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							nn0re | 
							 |-  ( N e. NN0 -> N e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							leloe | 
							 |-  ( ( M e. RR /\ N e. RR ) -> ( M <_ N <-> ( M < N \/ M = N ) ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( M < N \/ M = N ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							elnn0 | 
							 |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							elnn0 | 
							 |-  ( M e. NN0 <-> ( M e. NN \/ M = 0 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							nnsub | 
							 |-  ( ( M e. NN /\ N e. NN ) -> ( M < N <-> ( N - M ) e. NN ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ex | 
							 |-  ( M e. NN -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							nngt0 | 
							 |-  ( N e. NN -> 0 < N )  | 
						
						
							| 10 | 
							
								
							 | 
							nncn | 
							 |-  ( N e. NN -> N e. CC )  | 
						
						
							| 11 | 
							
								10
							 | 
							subid1d | 
							 |-  ( N e. NN -> ( N - 0 ) = N )  | 
						
						
							| 12 | 
							
								
							 | 
							id | 
							 |-  ( N e. NN -> N e. NN )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							eqeltrd | 
							 |-  ( N e. NN -> ( N - 0 ) e. NN )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							2thd | 
							 |-  ( N e. NN -> ( 0 < N <-> ( N - 0 ) e. NN ) )  | 
						
						
							| 15 | 
							
								
							 | 
							breq1 | 
							 |-  ( M = 0 -> ( M < N <-> 0 < N ) )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq2 | 
							 |-  ( M = 0 -> ( N - M ) = ( N - 0 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eleq1d | 
							 |-  ( M = 0 -> ( ( N - M ) e. NN <-> ( N - 0 ) e. NN ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							bibi12d | 
							 |-  ( M = 0 -> ( ( M < N <-> ( N - M ) e. NN ) <-> ( 0 < N <-> ( N - 0 ) e. NN ) ) )  | 
						
						
							| 19 | 
							
								14 18
							 | 
							imbitrrid | 
							 |-  ( M = 0 -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) )  | 
						
						
							| 20 | 
							
								8 19
							 | 
							jaoi | 
							 |-  ( ( M e. NN \/ M = 0 ) -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) )  | 
						
						
							| 21 | 
							
								6 20
							 | 
							sylbi | 
							 |-  ( M e. NN0 -> ( N e. NN -> ( M < N <-> ( N - M ) e. NN ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							nn0nlt0 | 
							 |-  ( M e. NN0 -> -. M < 0 )  | 
						
						
							| 23 | 
							
								22
							 | 
							pm2.21d | 
							 |-  ( M e. NN0 -> ( M < 0 -> ( 0 - M ) e. NN ) )  | 
						
						
							| 24 | 
							
								
							 | 
							nngt0 | 
							 |-  ( ( 0 - M ) e. NN -> 0 < ( 0 - M ) )  | 
						
						
							| 25 | 
							
								
							 | 
							0re | 
							 |-  0 e. RR  | 
						
						
							| 26 | 
							
								
							 | 
							posdif | 
							 |-  ( ( M e. RR /\ 0 e. RR ) -> ( M < 0 <-> 0 < ( 0 - M ) ) )  | 
						
						
							| 27 | 
							
								1 25 26
							 | 
							sylancl | 
							 |-  ( M e. NN0 -> ( M < 0 <-> 0 < ( 0 - M ) ) )  | 
						
						
							| 28 | 
							
								24 27
							 | 
							imbitrrid | 
							 |-  ( M e. NN0 -> ( ( 0 - M ) e. NN -> M < 0 ) )  | 
						
						
							| 29 | 
							
								23 28
							 | 
							impbid | 
							 |-  ( M e. NN0 -> ( M < 0 <-> ( 0 - M ) e. NN ) )  | 
						
						
							| 30 | 
							
								
							 | 
							breq2 | 
							 |-  ( N = 0 -> ( M < N <-> M < 0 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							oveq1 | 
							 |-  ( N = 0 -> ( N - M ) = ( 0 - M ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							eleq1d | 
							 |-  ( N = 0 -> ( ( N - M ) e. NN <-> ( 0 - M ) e. NN ) )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							bibi12d | 
							 |-  ( N = 0 -> ( ( M < N <-> ( N - M ) e. NN ) <-> ( M < 0 <-> ( 0 - M ) e. NN ) ) )  | 
						
						
							| 34 | 
							
								29 33
							 | 
							syl5ibrcom | 
							 |-  ( M e. NN0 -> ( N = 0 -> ( M < N <-> ( N - M ) e. NN ) ) )  | 
						
						
							| 35 | 
							
								21 34
							 | 
							jaod | 
							 |-  ( M e. NN0 -> ( ( N e. NN \/ N = 0 ) -> ( M < N <-> ( N - M ) e. NN ) ) )  | 
						
						
							| 36 | 
							
								5 35
							 | 
							biimtrid | 
							 |-  ( M e. NN0 -> ( N e. NN0 -> ( M < N <-> ( N - M ) e. NN ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							imp | 
							 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( M < N <-> ( N - M ) e. NN ) )  | 
						
						
							| 38 | 
							
								
							 | 
							nn0cn | 
							 |-  ( N e. NN0 -> N e. CC )  | 
						
						
							| 39 | 
							
								
							 | 
							nn0cn | 
							 |-  ( M e. NN0 -> M e. CC )  | 
						
						
							| 40 | 
							
								
							 | 
							subeq0 | 
							 |-  ( ( N e. CC /\ M e. CC ) -> ( ( N - M ) = 0 <-> N = M ) )  | 
						
						
							| 41 | 
							
								38 39 40
							 | 
							syl2anr | 
							 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( N - M ) = 0 <-> N = M ) )  | 
						
						
							| 42 | 
							
								
							 | 
							eqcom | 
							 |-  ( N = M <-> M = N )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							bitr2di | 
							 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( M = N <-> ( N - M ) = 0 ) )  | 
						
						
							| 44 | 
							
								37 43
							 | 
							orbi12d | 
							 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M < N \/ M = N ) <-> ( ( N - M ) e. NN \/ ( N - M ) = 0 ) ) )  | 
						
						
							| 45 | 
							
								4 44
							 | 
							bitrd | 
							 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( ( N - M ) e. NN \/ ( N - M ) = 0 ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							elnn0 | 
							 |-  ( ( N - M ) e. NN0 <-> ( ( N - M ) e. NN \/ ( N - M ) = 0 ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							bitr4di | 
							 |-  ( ( M e. NN0 /\ N e. NN0 ) -> ( M <_ N <-> ( N - M ) e. NN0 ) )  |