| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							zre | 
							 |-  ( M e. ZZ -> M e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							zre | 
							 |-  ( N e. ZZ -> N e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							posdif | 
							 |-  ( ( M e. RR /\ N e. RR ) -> ( M < N <-> 0 < ( N - M ) ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2an | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> 0 < ( N - M ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							zsubcl | 
							 |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( N - M ) e. ZZ )  | 
						
						
							| 6 | 
							
								5
							 | 
							ancoms | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( N - M ) e. ZZ )  | 
						
						
							| 7 | 
							
								6
							 | 
							biantrurd | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 < ( N - M ) <-> ( ( N - M ) e. ZZ /\ 0 < ( N - M ) ) ) )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							bitrd | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( ( N - M ) e. ZZ /\ 0 < ( N - M ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							elnnz | 
							 |-  ( ( N - M ) e. NN <-> ( ( N - M ) e. ZZ /\ 0 < ( N - M ) ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							bitr4di | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( N - M ) e. NN ) )  |