Description: When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sublt0d.1 | |- ( ph -> A e. RR ) |
|
| sublt0d.2 | |- ( ph -> B e. RR ) |
||
| Assertion | sublt0d | |- ( ph -> ( ( A - B ) < 0 <-> A < B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sublt0d.1 | |- ( ph -> A e. RR ) |
|
| 2 | sublt0d.2 | |- ( ph -> B e. RR ) |
|
| 3 | 0red | |- ( ph -> 0 e. RR ) |
|
| 4 | 1 2 3 | ltsubaddd | |- ( ph -> ( ( A - B ) < 0 <-> A < ( 0 + B ) ) ) |
| 5 | 2 | recnd | |- ( ph -> B e. CC ) |
| 6 | 5 | addlidd | |- ( ph -> ( 0 + B ) = B ) |
| 7 | 6 | breq2d | |- ( ph -> ( A < ( 0 + B ) <-> A < B ) ) |
| 8 | 4 7 | bitrd | |- ( ph -> ( ( A - B ) < 0 <-> A < B ) ) |