Description: The floor of a real number in [ 0 , 1 ) is 0. Remark: may shorten the proof of modid or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | ico01fl0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |
|
2 | 1xr | |
|
3 | icossre | |
|
4 | 1 2 3 | mp2an | |
5 | 4 | sseli | |
6 | 0xr | |
|
7 | elico1 | |
|
8 | 6 2 7 | mp2an | |
9 | 8 | simp2bi | |
10 | 8 | simp3bi | |
11 | recn | |
|
12 | 11 | addlidd | |
13 | 12 | fveqeq2d | |
14 | 0z | |
|
15 | flbi2 | |
|
16 | 14 15 | mpan | |
17 | 13 16 | bitr3d | |
18 | 17 | biimpar | |
19 | 5 9 10 18 | syl12anc | |