Metamath Proof Explorer


Theorem ico01fl0

Description: The floor of a real number in [ 0 , 1 ) is 0. Remark: may shorten the proof of modid or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019)

Ref Expression
Assertion ico01fl0 A01A=0

Proof

Step Hyp Ref Expression
1 0re 0
2 1xr 1*
3 icossre 01*01
4 1 2 3 mp2an 01
5 4 sseli A01A
6 0xr 0*
7 elico1 0*1*A01A*0AA<1
8 6 2 7 mp2an A01A*0AA<1
9 8 simp2bi A010A
10 8 simp3bi A01A<1
11 recn AA
12 11 addlidd A0+A=A
13 12 fveqeq2d A0+A=0A=0
14 0z 0
15 flbi2 0A0+A=00AA<1
16 14 15 mpan A0+A=00AA<1
17 13 16 bitr3d AA=00AA<1
18 17 biimpar A0AA<1A=0
19 5 9 10 18 syl12anc A01A=0