| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  2  ∈  ℕ ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  𝐾  ∈  ℤ ) | 
						
							| 4 |  | nn0rp0 | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( 0 [,) +∞ ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  𝑁  ∈  ( 0 [,) +∞ ) ) | 
						
							| 6 |  | digval | ⊢ ( ( 2  ∈  ℕ  ∧  𝐾  ∈  ℤ  ∧  𝑁  ∈  ( 0 [,) +∞ ) )  →  ( 𝐾 ( digit ‘ 2 ) 𝑁 )  =  ( ( ⌊ ‘ ( ( 2 ↑ - 𝐾 )  ·  𝑁 ) )  mod  2 ) ) | 
						
							| 7 | 2 3 5 6 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  ( 𝐾 ( digit ‘ 2 ) 𝑁 )  =  ( ( ⌊ ‘ ( ( 2 ↑ - 𝐾 )  ·  𝑁 ) )  mod  2 ) ) | 
						
							| 8 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 9 | 8 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  2  ∈  ℝ ) | 
						
							| 10 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  2  ≠  0 ) | 
						
							| 12 |  | znegcl | ⊢ ( 𝐾  ∈  ℤ  →  - 𝐾  ∈  ℤ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  - 𝐾  ∈  ℤ ) | 
						
							| 14 | 9 11 13 | reexpclzd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  ( 2 ↑ - 𝐾 )  ∈  ℝ ) | 
						
							| 15 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  𝑁  ∈  ℝ ) | 
						
							| 17 | 14 16 | remulcld | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  ( ( 2 ↑ - 𝐾 )  ·  𝑁 )  ∈  ℝ ) | 
						
							| 18 | 17 | flcld | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  ( ⌊ ‘ ( ( 2 ↑ - 𝐾 )  ·  𝑁 ) )  ∈  ℤ ) | 
						
							| 19 |  | elmod2 | ⊢ ( ( ⌊ ‘ ( ( 2 ↑ - 𝐾 )  ·  𝑁 ) )  ∈  ℤ  →  ( ( ⌊ ‘ ( ( 2 ↑ - 𝐾 )  ·  𝑁 ) )  mod  2 )  ∈  { 0 ,  1 } ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  ( ( ⌊ ‘ ( ( 2 ↑ - 𝐾 )  ·  𝑁 ) )  mod  2 )  ∈  { 0 ,  1 } ) | 
						
							| 21 | 7 20 | eqeltrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ )  →  ( 𝐾 ( digit ‘ 2 ) 𝑁 )  ∈  { 0 ,  1 } ) |