| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  2  ∈  ℕ ) | 
						
							| 3 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  0  ∈  ℕ0 ) | 
						
							| 5 |  | nn0rp0 | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( 0 [,) +∞ ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  𝑁  ∈  ( 0 [,) +∞ ) ) | 
						
							| 7 |  | nn0digval | ⊢ ( ( 2  ∈  ℕ  ∧  0  ∈  ℕ0  ∧  𝑁  ∈  ( 0 [,) +∞ ) )  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  mod  2 ) ) | 
						
							| 8 | 2 4 6 7 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  mod  2 ) ) | 
						
							| 9 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 10 |  | exp0 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 0 )  =  1 ) | 
						
							| 11 | 9 10 | mp1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( 2 ↑ 0 )  =  1 ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( 𝑁  /  ( 2 ↑ 0 ) )  =  ( 𝑁  /  1 ) ) | 
						
							| 13 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 14 | 13 | div1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  /  1 )  =  𝑁 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( 𝑁  /  1 )  =  𝑁 ) | 
						
							| 16 | 12 15 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( 𝑁  /  ( 2 ↑ 0 ) )  =  𝑁 ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  =  ( ⌊ ‘ 𝑁 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  mod  2 )  =  ( ( ⌊ ‘ 𝑁 )  mod  2 ) ) | 
						
							| 19 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 20 |  | flid | ⊢ ( 𝑁  ∈  ℤ  →  ( ⌊ ‘ 𝑁 )  =  𝑁 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ⌊ ‘ 𝑁 )  =  𝑁 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( ⌊ ‘ 𝑁 )  =  𝑁 ) | 
						
							| 23 | 22 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( ( ⌊ ‘ 𝑁 )  mod  2 )  =  ( 𝑁  mod  2 ) ) | 
						
							| 24 |  | nn0z | ⊢ ( ( 𝑁  /  2 )  ∈  ℕ0  →  ( 𝑁  /  2 )  ∈  ℤ ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( 𝑁  /  2 )  ∈  ℤ ) | 
						
							| 26 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  𝑁  ∈  ℝ ) | 
						
							| 28 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 29 |  | mod0 | ⊢ ( ( 𝑁  ∈  ℝ  ∧  2  ∈  ℝ+ )  →  ( ( 𝑁  mod  2 )  =  0  ↔  ( 𝑁  /  2 )  ∈  ℤ ) ) | 
						
							| 30 | 27 28 29 | sylancl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( ( 𝑁  mod  2 )  =  0  ↔  ( 𝑁  /  2 )  ∈  ℤ ) ) | 
						
							| 31 | 25 30 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( 𝑁  mod  2 )  =  0 ) | 
						
							| 32 | 23 31 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( ( ⌊ ‘ 𝑁 )  mod  2 )  =  0 ) | 
						
							| 33 | 18 32 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  mod  2 )  =  0 ) | 
						
							| 34 | 8 33 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 𝑁  /  2 )  ∈  ℕ0 )  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  0 ) |