| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  2  ∈  ℕ ) | 
						
							| 3 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  0  ∈  ℕ0 ) | 
						
							| 5 |  | nn0rp0 | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( 0 [,) +∞ ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  𝑁  ∈  ( 0 [,) +∞ ) ) | 
						
							| 7 |  | nn0digval | ⊢ ( ( 2  ∈  ℕ  ∧  0  ∈  ℕ0  ∧  𝑁  ∈  ( 0 [,) +∞ ) )  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  mod  2 ) ) | 
						
							| 8 | 2 4 6 7 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  mod  2 ) ) | 
						
							| 9 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 10 |  | exp0 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 0 )  =  1 ) | 
						
							| 11 | 9 10 | mp1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 2 ↑ 0 )  =  1 ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝑁  /  ( 2 ↑ 0 ) )  =  ( 𝑁  /  1 ) ) | 
						
							| 13 |  | nn0cn | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℂ ) | 
						
							| 14 | 13 | div1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  /  1 )  =  𝑁 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝑁  /  1 )  =  𝑁 ) | 
						
							| 16 | 12 15 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝑁  /  ( 2 ↑ 0 ) )  =  𝑁 ) | 
						
							| 17 | 16 | fveq2d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  =  ( ⌊ ‘ 𝑁 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  mod  2 )  =  ( ( ⌊ ‘ 𝑁 )  mod  2 ) ) | 
						
							| 19 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 20 |  | flid | ⊢ ( 𝑁  ∈  ℤ  →  ( ⌊ ‘ 𝑁 )  =  𝑁 ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ⌊ ‘ 𝑁 )  =  𝑁 ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ⌊ ‘ 𝑁 )  mod  2 )  =  ( 𝑁  mod  2 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( ⌊ ‘ 𝑁 )  mod  2 )  =  ( 𝑁  mod  2 ) ) | 
						
							| 24 |  | nn0z | ⊢ ( ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0  →  ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ ) | 
						
							| 26 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 27 | 26 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  2  ∈  ℤ ) | 
						
							| 28 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 29 | 28 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  2  ≠  0 ) | 
						
							| 30 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 31 | 30 | nn0zd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℤ ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝑁  +  1 )  ∈  ℤ ) | 
						
							| 33 |  | dvdsval2 | ⊢ ( ( 2  ∈  ℤ  ∧  2  ≠  0  ∧  ( 𝑁  +  1 )  ∈  ℤ )  →  ( 2  ∥  ( 𝑁  +  1 )  ↔  ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 34 | 27 29 32 33 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 2  ∥  ( 𝑁  +  1 )  ↔  ( ( 𝑁  +  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 35 | 25 34 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  2  ∥  ( 𝑁  +  1 ) ) | 
						
							| 36 |  | oddp1even | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  𝑁  ↔  2  ∥  ( 𝑁  +  1 ) ) ) | 
						
							| 37 | 19 36 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ¬  2  ∥  𝑁  ↔  2  ∥  ( 𝑁  +  1 ) ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ¬  2  ∥  𝑁  ↔  2  ∥  ( 𝑁  +  1 ) ) ) | 
						
							| 39 | 35 38 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ¬  2  ∥  𝑁 ) | 
						
							| 40 | 19 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 41 |  | mod2eq1n2dvds | ⊢ ( 𝑁  ∈  ℤ  →  ( ( 𝑁  mod  2 )  =  1  ↔  ¬  2  ∥  𝑁 ) ) | 
						
							| 42 | 40 41 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( 𝑁  mod  2 )  =  1  ↔  ¬  2  ∥  𝑁 ) ) | 
						
							| 43 | 39 42 | mpbird | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝑁  mod  2 )  =  1 ) | 
						
							| 44 | 23 43 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( ⌊ ‘ 𝑁 )  mod  2 )  =  1 ) | 
						
							| 45 | 18 44 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 0 ) ) )  mod  2 )  =  1 ) | 
						
							| 46 | 8 45 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑁  +  1 )  /  2 )  ∈  ℕ0 )  →  ( 0 ( digit ‘ 2 ) 𝑁 )  =  1 ) |