| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0re | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℝ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  𝑁  ∈  ℝ ) | 
						
							| 3 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 5 |  | reexpcl | ⊢ ( ( 2  ∈  ℝ  ∧  𝐾  ∈  ℕ0 )  →  ( 2 ↑ 𝐾 )  ∈  ℝ ) | 
						
							| 6 | 4 5 | sylan | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 2 ↑ 𝐾 )  ∈  ℝ ) | 
						
							| 7 |  | 2cnd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  2  ∈  ℂ ) | 
						
							| 8 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 9 | 8 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  2  ≠  0 ) | 
						
							| 10 |  | nn0z | ⊢ ( 𝐾  ∈  ℕ0  →  𝐾  ∈  ℤ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  𝐾  ∈  ℤ ) | 
						
							| 12 | 7 9 11 | expne0d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 2 ↑ 𝐾 )  ≠  0 ) | 
						
							| 13 | 2 6 12 | redivcld | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 𝑁  /  ( 2 ↑ 𝐾 ) )  ∈  ℝ ) | 
						
							| 14 | 13 | flcld | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 𝐾 ) ) )  ∈  ℤ ) | 
						
							| 15 |  | mod2eq1n2dvds | ⊢ ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 𝐾 ) ) )  ∈  ℤ  →  ( ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 𝐾 ) ) )  mod  2 )  =  1  ↔  ¬  2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 𝐾 ) ) ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 𝐾 ) ) )  mod  2 )  =  1  ↔  ¬  2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 𝐾 ) ) ) ) ) | 
						
							| 17 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 18 | 17 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  2  ∈  ℕ ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  𝐾  ∈  ℕ0 ) | 
						
							| 20 |  | nn0rp0 | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ( 0 [,) +∞ ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  𝑁  ∈  ( 0 [,) +∞ ) ) | 
						
							| 22 |  | nn0digval | ⊢ ( ( 2  ∈  ℕ  ∧  𝐾  ∈  ℕ0  ∧  𝑁  ∈  ( 0 [,) +∞ ) )  →  ( 𝐾 ( digit ‘ 2 ) 𝑁 )  =  ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 𝐾 ) ) )  mod  2 ) ) | 
						
							| 23 | 18 19 21 22 | syl3anc | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾 ( digit ‘ 2 ) 𝑁 )  =  ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 𝐾 ) ) )  mod  2 ) ) | 
						
							| 24 | 23 | eqeq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐾 ( digit ‘ 2 ) 𝑁 )  =  1  ↔  ( ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 𝐾 ) ) )  mod  2 )  =  1 ) ) | 
						
							| 25 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 26 |  | bitsval2 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾  ∈  ( bits ‘ 𝑁 )  ↔  ¬  2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 𝐾 ) ) ) ) ) | 
						
							| 27 | 25 26 | sylan | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( 𝐾  ∈  ( bits ‘ 𝑁 )  ↔  ¬  2  ∥  ( ⌊ ‘ ( 𝑁  /  ( 2 ↑ 𝐾 ) ) ) ) ) | 
						
							| 28 | 16 24 27 | 3bitr4d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℕ0 )  →  ( ( 𝐾 ( digit ‘ 2 ) 𝑁 )  =  1  ↔  𝐾  ∈  ( bits ‘ 𝑁 ) ) ) |