Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
2 |
1
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
3 |
|
2re |
⊢ 2 ∈ ℝ |
4 |
3
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ ) |
5 |
|
reexpcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐾 ∈ ℕ0 ) → ( 2 ↑ 𝐾 ) ∈ ℝ ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 2 ↑ 𝐾 ) ∈ ℝ ) |
7 |
|
2cnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 2 ∈ ℂ ) |
8 |
|
2ne0 |
⊢ 2 ≠ 0 |
9 |
8
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 2 ≠ 0 ) |
10 |
|
nn0z |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ ) |
11 |
10
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℤ ) |
12 |
7 9 11
|
expne0d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 2 ↑ 𝐾 ) ≠ 0 ) |
13 |
2 6 12
|
redivcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 / ( 2 ↑ 𝐾 ) ) ∈ ℝ ) |
14 |
13
|
flcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝐾 ) ) ) ∈ ℤ ) |
15 |
|
mod2eq1n2dvds |
⊢ ( ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝐾 ) ) ) ∈ ℤ → ( ( ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝐾 ) ) ) mod 2 ) = 1 ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝐾 ) ) ) ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝐾 ) ) ) mod 2 ) = 1 ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝐾 ) ) ) ) ) |
17 |
|
2nn |
⊢ 2 ∈ ℕ |
18 |
17
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 2 ∈ ℕ ) |
19 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
20 |
|
nn0rp0 |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( 0 [,) +∞ ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 𝑁 ∈ ( 0 [,) +∞ ) ) |
22 |
|
nn0digval |
⊢ ( ( 2 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ( 0 [,) +∞ ) ) → ( 𝐾 ( digit ‘ 2 ) 𝑁 ) = ( ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝐾 ) ) ) mod 2 ) ) |
23 |
18 19 21 22
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ( digit ‘ 2 ) 𝑁 ) = ( ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝐾 ) ) ) mod 2 ) ) |
24 |
23
|
eqeq1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐾 ( digit ‘ 2 ) 𝑁 ) = 1 ↔ ( ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝐾 ) ) ) mod 2 ) = 1 ) ) |
25 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
26 |
|
bitsval2 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ∈ ( bits ‘ 𝑁 ) ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝐾 ) ) ) ) ) |
27 |
25 26
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 ∈ ( bits ‘ 𝑁 ) ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝐾 ) ) ) ) ) |
28 |
16 24 27
|
3bitr4d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝐾 ( digit ‘ 2 ) 𝑁 ) = 1 ↔ 𝐾 ∈ ( bits ‘ 𝑁 ) ) ) |