Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | bitsval2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ∈ ( bits ‘ 𝑁 ) ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitsval | ⊢ ( 𝑀 ∈ ( bits ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) ) | |
2 | df-3an | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) ↔ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) ∧ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) ) | |
3 | 1 2 | bitri | ⊢ ( 𝑀 ∈ ( bits ‘ 𝑁 ) ↔ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) ∧ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) ) |
4 | 3 | baib | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ∈ ( bits ‘ 𝑁 ) ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) ) |