Metamath Proof Explorer


Theorem bitsval2

Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsval2 ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ∈ ( bits ‘ 𝑁 ) ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 bitsval ( 𝑀 ∈ ( bits ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) )
2 df-3an ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) ↔ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) ∧ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) )
3 1 2 bitri ( 𝑀 ∈ ( bits ‘ 𝑁 ) ↔ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) ∧ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) )
4 3 baib ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ∈ ( bits ‘ 𝑁 ) ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑀 ) ) ) ) )