Metamath Proof Explorer


Theorem bitsval2

Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsval2 N M 0 M bits N ¬ 2 N 2 M

Proof

Step Hyp Ref Expression
1 bitsval M bits N N M 0 ¬ 2 N 2 M
2 df-3an N M 0 ¬ 2 N 2 M N M 0 ¬ 2 N 2 M
3 1 2 bitri M bits N N M 0 ¬ 2 N 2 M
4 3 baib N M 0 M bits N ¬ 2 N 2 M