Metamath Proof Explorer


Theorem bitsval2

Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsval2
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( M e. ( bits ` N ) <-> -. 2 || ( |_ ` ( N / ( 2 ^ M ) ) ) ) )

Proof

Step Hyp Ref Expression
1 bitsval
 |-  ( M e. ( bits ` N ) <-> ( N e. ZZ /\ M e. NN0 /\ -. 2 || ( |_ ` ( N / ( 2 ^ M ) ) ) ) )
2 df-3an
 |-  ( ( N e. ZZ /\ M e. NN0 /\ -. 2 || ( |_ ` ( N / ( 2 ^ M ) ) ) ) <-> ( ( N e. ZZ /\ M e. NN0 ) /\ -. 2 || ( |_ ` ( N / ( 2 ^ M ) ) ) ) )
3 1 2 bitri
 |-  ( M e. ( bits ` N ) <-> ( ( N e. ZZ /\ M e. NN0 ) /\ -. 2 || ( |_ ` ( N / ( 2 ^ M ) ) ) ) )
4 3 baib
 |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( M e. ( bits ` N ) <-> -. 2 || ( |_ ` ( N / ( 2 ^ M ) ) ) ) )