Metamath Proof Explorer


Theorem bitsss

Description: The set of bits of an integer is a subset of NN0 . (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsss ( bits ‘ 𝑁 ) ⊆ ℕ0

Proof

Step Hyp Ref Expression
1 bitsval ( 𝑚 ∈ ( bits ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑚 ) ) ) ) )
2 1 simp2bi ( 𝑚 ∈ ( bits ‘ 𝑁 ) → 𝑚 ∈ ℕ0 )
3 2 ssriv ( bits ‘ 𝑁 ) ⊆ ℕ0