Metamath Proof Explorer


Theorem bitsf

Description: The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsf bits : ℤ ⟶ 𝒫 ℕ0

Proof

Step Hyp Ref Expression
1 df-bits bits = ( 𝑛 ∈ ℤ ↦ { 𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑘 ) ) ) } )
2 nn0ex 0 ∈ V
3 ssrab2 { 𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑘 ) ) ) } ⊆ ℕ0
4 2 3 elpwi2 { 𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑘 ) ) ) } ∈ 𝒫 ℕ0
5 4 a1i ( 𝑛 ∈ ℤ → { 𝑘 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑘 ) ) ) } ∈ 𝒫 ℕ0 )
6 1 5 fmpti bits : ℤ ⟶ 𝒫 ℕ0