Metamath Proof Explorer


Theorem bitsf

Description: The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsf bits : 𝒫 0

Proof

Step Hyp Ref Expression
1 df-bits bits = n k 0 | ¬ 2 n 2 k
2 nn0ex 0 V
3 ssrab2 k 0 | ¬ 2 n 2 k 0
4 2 3 elpwi2 k 0 | ¬ 2 n 2 k 𝒫 0
5 4 a1i n k 0 | ¬ 2 n 2 k 𝒫 0
6 1 5 fmpti bits : 𝒫 0