Metamath Proof Explorer


Theorem bitsf

Description: The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsf
|- bits : ZZ --> ~P NN0

Proof

Step Hyp Ref Expression
1 df-bits
 |-  bits = ( n e. ZZ |-> { k e. NN0 | -. 2 || ( |_ ` ( n / ( 2 ^ k ) ) ) } )
2 nn0ex
 |-  NN0 e. _V
3 ssrab2
 |-  { k e. NN0 | -. 2 || ( |_ ` ( n / ( 2 ^ k ) ) ) } C_ NN0
4 2 3 elpwi2
 |-  { k e. NN0 | -. 2 || ( |_ ` ( n / ( 2 ^ k ) ) ) } e. ~P NN0
5 4 a1i
 |-  ( n e. ZZ -> { k e. NN0 | -. 2 || ( |_ ` ( n / ( 2 ^ k ) ) ) } e. ~P NN0 )
6 1 5 fmpti
 |-  bits : ZZ --> ~P NN0