| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0nn0 |
|- 0 e. NN0 |
| 2 |
|
bitsval2 |
|- ( ( N e. ZZ /\ 0 e. NN0 ) -> ( 0 e. ( bits ` N ) <-> -. 2 || ( |_ ` ( N / ( 2 ^ 0 ) ) ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( N e. ZZ -> ( 0 e. ( bits ` N ) <-> -. 2 || ( |_ ` ( N / ( 2 ^ 0 ) ) ) ) ) |
| 4 |
|
2cn |
|- 2 e. CC |
| 5 |
|
exp0 |
|- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
| 6 |
4 5
|
ax-mp |
|- ( 2 ^ 0 ) = 1 |
| 7 |
6
|
oveq2i |
|- ( N / ( 2 ^ 0 ) ) = ( N / 1 ) |
| 8 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 9 |
8
|
div1d |
|- ( N e. ZZ -> ( N / 1 ) = N ) |
| 10 |
7 9
|
eqtrid |
|- ( N e. ZZ -> ( N / ( 2 ^ 0 ) ) = N ) |
| 11 |
10
|
fveq2d |
|- ( N e. ZZ -> ( |_ ` ( N / ( 2 ^ 0 ) ) ) = ( |_ ` N ) ) |
| 12 |
|
flid |
|- ( N e. ZZ -> ( |_ ` N ) = N ) |
| 13 |
11 12
|
eqtrd |
|- ( N e. ZZ -> ( |_ ` ( N / ( 2 ^ 0 ) ) ) = N ) |
| 14 |
13
|
breq2d |
|- ( N e. ZZ -> ( 2 || ( |_ ` ( N / ( 2 ^ 0 ) ) ) <-> 2 || N ) ) |
| 15 |
14
|
notbid |
|- ( N e. ZZ -> ( -. 2 || ( |_ ` ( N / ( 2 ^ 0 ) ) ) <-> -. 2 || N ) ) |
| 16 |
3 15
|
bitrd |
|- ( N e. ZZ -> ( 0 e. ( bits ` N ) <-> -. 2 || N ) ) |