Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> 2 || ( 2 x. N ) ) |
3 |
1 2
|
mpan |
|- ( N e. ZZ -> 2 || ( 2 x. N ) ) |
4 |
1
|
a1i |
|- ( N e. ZZ -> 2 e. ZZ ) |
5 |
|
id |
|- ( N e. ZZ -> N e. ZZ ) |
6 |
4 5
|
zmulcld |
|- ( N e. ZZ -> ( 2 x. N ) e. ZZ ) |
7 |
|
bits0 |
|- ( ( 2 x. N ) e. ZZ -> ( 0 e. ( bits ` ( 2 x. N ) ) <-> -. 2 || ( 2 x. N ) ) ) |
8 |
6 7
|
syl |
|- ( N e. ZZ -> ( 0 e. ( bits ` ( 2 x. N ) ) <-> -. 2 || ( 2 x. N ) ) ) |
9 |
8
|
con2bid |
|- ( N e. ZZ -> ( 2 || ( 2 x. N ) <-> -. 0 e. ( bits ` ( 2 x. N ) ) ) ) |
10 |
3 9
|
mpbid |
|- ( N e. ZZ -> -. 0 e. ( bits ` ( 2 x. N ) ) ) |