Metamath Proof Explorer


Theorem bits0e

Description: The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bits0e N ¬ 0 bits 2 N

Proof

Step Hyp Ref Expression
1 2z 2
2 dvdsmul1 2 N 2 2 N
3 1 2 mpan N 2 2 N
4 1 a1i N 2
5 id N N
6 4 5 zmulcld N 2 N
7 bits0 2 N 0 bits 2 N ¬ 2 2 N
8 6 7 syl N 0 bits 2 N ¬ 2 2 N
9 8 con2bid N 2 2 N ¬ 0 bits 2 N
10 3 9 mpbid N ¬ 0 bits 2 N