Metamath Proof Explorer


Theorem bits0o

Description: The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bits0o N 0 bits 2 N + 1

Proof

Step Hyp Ref Expression
1 2z 2
2 dvdsmul1 2 N 2 2 N
3 1 2 mpan N 2 2 N
4 1 a1i N 2
5 id N N
6 4 5 zmulcld N 2 N
7 2nn 2
8 7 a1i N 2
9 1lt2 1 < 2
10 9 a1i N 1 < 2
11 ndvdsp1 2 N 2 1 < 2 2 2 N ¬ 2 2 N + 1
12 6 8 10 11 syl3anc N 2 2 N ¬ 2 2 N + 1
13 3 12 mpd N ¬ 2 2 N + 1
14 6 peano2zd N 2 N + 1
15 bits0 2 N + 1 0 bits 2 N + 1 ¬ 2 2 N + 1
16 14 15 syl N 0 bits 2 N + 1 ¬ 2 2 N + 1
17 13 16 mpbird N 0 bits 2 N + 1