Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|
2 |
1
|
a1i |
|
3 |
2
|
nncnd |
|
4 |
|
simpr |
|
5 |
3 4
|
expp1d |
|
6 |
2 4
|
nnexpcld |
|
7 |
6
|
nncnd |
|
8 |
7 3
|
mulcomd |
|
9 |
5 8
|
eqtrd |
|
10 |
9
|
oveq2d |
|
11 |
|
simpl |
|
12 |
11
|
zcnd |
|
13 |
2
|
nnne0d |
|
14 |
6
|
nnne0d |
|
15 |
12 3 7 13 14
|
divdiv1d |
|
16 |
10 15
|
eqtr4d |
|
17 |
16
|
fveq2d |
|
18 |
11
|
zred |
|
19 |
18
|
rehalfcld |
|
20 |
|
fldiv |
|
21 |
19 6 20
|
syl2anc |
|
22 |
17 21
|
eqtr4d |
|
23 |
22
|
breq2d |
|
24 |
23
|
notbid |
|
25 |
|
peano2nn0 |
|
26 |
|
bitsval2 |
|
27 |
25 26
|
sylan2 |
|
28 |
19
|
flcld |
|
29 |
|
bitsval2 |
|
30 |
28 29
|
sylancom |
|
31 |
24 27 30
|
3bitr4d |
|