Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
|- 2 e. NN |
2 |
1
|
a1i |
|- ( ( N e. ZZ /\ M e. NN0 ) -> 2 e. NN ) |
3 |
2
|
nncnd |
|- ( ( N e. ZZ /\ M e. NN0 ) -> 2 e. CC ) |
4 |
|
simpr |
|- ( ( N e. ZZ /\ M e. NN0 ) -> M e. NN0 ) |
5 |
3 4
|
expp1d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( 2 ^ ( M + 1 ) ) = ( ( 2 ^ M ) x. 2 ) ) |
6 |
2 4
|
nnexpcld |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( 2 ^ M ) e. NN ) |
7 |
6
|
nncnd |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( 2 ^ M ) e. CC ) |
8 |
7 3
|
mulcomd |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( ( 2 ^ M ) x. 2 ) = ( 2 x. ( 2 ^ M ) ) ) |
9 |
5 8
|
eqtrd |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( 2 ^ ( M + 1 ) ) = ( 2 x. ( 2 ^ M ) ) ) |
10 |
9
|
oveq2d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( N / ( 2 ^ ( M + 1 ) ) ) = ( N / ( 2 x. ( 2 ^ M ) ) ) ) |
11 |
|
simpl |
|- ( ( N e. ZZ /\ M e. NN0 ) -> N e. ZZ ) |
12 |
11
|
zcnd |
|- ( ( N e. ZZ /\ M e. NN0 ) -> N e. CC ) |
13 |
2
|
nnne0d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> 2 =/= 0 ) |
14 |
6
|
nnne0d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( 2 ^ M ) =/= 0 ) |
15 |
12 3 7 13 14
|
divdiv1d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( ( N / 2 ) / ( 2 ^ M ) ) = ( N / ( 2 x. ( 2 ^ M ) ) ) ) |
16 |
10 15
|
eqtr4d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( N / ( 2 ^ ( M + 1 ) ) ) = ( ( N / 2 ) / ( 2 ^ M ) ) ) |
17 |
16
|
fveq2d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( |_ ` ( N / ( 2 ^ ( M + 1 ) ) ) ) = ( |_ ` ( ( N / 2 ) / ( 2 ^ M ) ) ) ) |
18 |
11
|
zred |
|- ( ( N e. ZZ /\ M e. NN0 ) -> N e. RR ) |
19 |
18
|
rehalfcld |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( N / 2 ) e. RR ) |
20 |
|
fldiv |
|- ( ( ( N / 2 ) e. RR /\ ( 2 ^ M ) e. NN ) -> ( |_ ` ( ( |_ ` ( N / 2 ) ) / ( 2 ^ M ) ) ) = ( |_ ` ( ( N / 2 ) / ( 2 ^ M ) ) ) ) |
21 |
19 6 20
|
syl2anc |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( |_ ` ( ( |_ ` ( N / 2 ) ) / ( 2 ^ M ) ) ) = ( |_ ` ( ( N / 2 ) / ( 2 ^ M ) ) ) ) |
22 |
17 21
|
eqtr4d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( |_ ` ( N / ( 2 ^ ( M + 1 ) ) ) ) = ( |_ ` ( ( |_ ` ( N / 2 ) ) / ( 2 ^ M ) ) ) ) |
23 |
22
|
breq2d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( 2 || ( |_ ` ( N / ( 2 ^ ( M + 1 ) ) ) ) <-> 2 || ( |_ ` ( ( |_ ` ( N / 2 ) ) / ( 2 ^ M ) ) ) ) ) |
24 |
23
|
notbid |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( -. 2 || ( |_ ` ( N / ( 2 ^ ( M + 1 ) ) ) ) <-> -. 2 || ( |_ ` ( ( |_ ` ( N / 2 ) ) / ( 2 ^ M ) ) ) ) ) |
25 |
|
peano2nn0 |
|- ( M e. NN0 -> ( M + 1 ) e. NN0 ) |
26 |
|
bitsval2 |
|- ( ( N e. ZZ /\ ( M + 1 ) e. NN0 ) -> ( ( M + 1 ) e. ( bits ` N ) <-> -. 2 || ( |_ ` ( N / ( 2 ^ ( M + 1 ) ) ) ) ) ) |
27 |
25 26
|
sylan2 |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` N ) <-> -. 2 || ( |_ ` ( N / ( 2 ^ ( M + 1 ) ) ) ) ) ) |
28 |
19
|
flcld |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( |_ ` ( N / 2 ) ) e. ZZ ) |
29 |
|
bitsval2 |
|- ( ( ( |_ ` ( N / 2 ) ) e. ZZ /\ M e. NN0 ) -> ( M e. ( bits ` ( |_ ` ( N / 2 ) ) ) <-> -. 2 || ( |_ ` ( ( |_ ` ( N / 2 ) ) / ( 2 ^ M ) ) ) ) ) |
30 |
28 29
|
sylancom |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( M e. ( bits ` ( |_ ` ( N / 2 ) ) ) <-> -. 2 || ( |_ ` ( ( |_ ` ( N / 2 ) ) / ( 2 ^ M ) ) ) ) ) |
31 |
24 27 30
|
3bitr4d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` N ) <-> M e. ( bits ` ( |_ ` ( N / 2 ) ) ) ) ) |