| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  |-  2 e. ZZ | 
						
							| 2 | 1 | a1i |  |-  ( N e. ZZ -> 2 e. ZZ ) | 
						
							| 3 |  | id |  |-  ( N e. ZZ -> N e. ZZ ) | 
						
							| 4 | 2 3 | zmulcld |  |-  ( N e. ZZ -> ( 2 x. N ) e. ZZ ) | 
						
							| 5 |  | bitsp1 |  |-  ( ( ( 2 x. N ) e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( 2 x. N ) ) <-> M e. ( bits ` ( |_ ` ( ( 2 x. N ) / 2 ) ) ) ) ) | 
						
							| 6 | 4 5 | sylan |  |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( 2 x. N ) ) <-> M e. ( bits ` ( |_ ` ( ( 2 x. N ) / 2 ) ) ) ) ) | 
						
							| 7 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 8 |  | 2cnd |  |-  ( N e. ZZ -> 2 e. CC ) | 
						
							| 9 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 10 | 9 | a1i |  |-  ( N e. ZZ -> 2 =/= 0 ) | 
						
							| 11 | 7 8 10 | divcan3d |  |-  ( N e. ZZ -> ( ( 2 x. N ) / 2 ) = N ) | 
						
							| 12 | 11 | fveq2d |  |-  ( N e. ZZ -> ( |_ ` ( ( 2 x. N ) / 2 ) ) = ( |_ ` N ) ) | 
						
							| 13 |  | flid |  |-  ( N e. ZZ -> ( |_ ` N ) = N ) | 
						
							| 14 | 12 13 | eqtrd |  |-  ( N e. ZZ -> ( |_ ` ( ( 2 x. N ) / 2 ) ) = N ) | 
						
							| 15 | 14 | adantr |  |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( |_ ` ( ( 2 x. N ) / 2 ) ) = N ) | 
						
							| 16 | 15 | fveq2d |  |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( bits ` ( |_ ` ( ( 2 x. N ) / 2 ) ) ) = ( bits ` N ) ) | 
						
							| 17 | 16 | eleq2d |  |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( M e. ( bits ` ( |_ ` ( ( 2 x. N ) / 2 ) ) ) <-> M e. ( bits ` N ) ) ) | 
						
							| 18 | 6 17 | bitrd |  |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( 2 x. N ) ) <-> M e. ( bits ` N ) ) ) |