Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
1
|
a1i |
|- ( N e. ZZ -> 2 e. ZZ ) |
3 |
|
id |
|- ( N e. ZZ -> N e. ZZ ) |
4 |
2 3
|
zmulcld |
|- ( N e. ZZ -> ( 2 x. N ) e. ZZ ) |
5 |
|
bitsp1 |
|- ( ( ( 2 x. N ) e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( 2 x. N ) ) <-> M e. ( bits ` ( |_ ` ( ( 2 x. N ) / 2 ) ) ) ) ) |
6 |
4 5
|
sylan |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( 2 x. N ) ) <-> M e. ( bits ` ( |_ ` ( ( 2 x. N ) / 2 ) ) ) ) ) |
7 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
8 |
|
2cnd |
|- ( N e. ZZ -> 2 e. CC ) |
9 |
|
2ne0 |
|- 2 =/= 0 |
10 |
9
|
a1i |
|- ( N e. ZZ -> 2 =/= 0 ) |
11 |
7 8 10
|
divcan3d |
|- ( N e. ZZ -> ( ( 2 x. N ) / 2 ) = N ) |
12 |
11
|
fveq2d |
|- ( N e. ZZ -> ( |_ ` ( ( 2 x. N ) / 2 ) ) = ( |_ ` N ) ) |
13 |
|
flid |
|- ( N e. ZZ -> ( |_ ` N ) = N ) |
14 |
12 13
|
eqtrd |
|- ( N e. ZZ -> ( |_ ` ( ( 2 x. N ) / 2 ) ) = N ) |
15 |
14
|
adantr |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( |_ ` ( ( 2 x. N ) / 2 ) ) = N ) |
16 |
15
|
fveq2d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( bits ` ( |_ ` ( ( 2 x. N ) / 2 ) ) ) = ( bits ` N ) ) |
17 |
16
|
eleq2d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( M e. ( bits ` ( |_ ` ( ( 2 x. N ) / 2 ) ) ) <-> M e. ( bits ` N ) ) ) |
18 |
6 17
|
bitrd |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( 2 x. N ) ) <-> M e. ( bits ` N ) ) ) |