| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  |-  2 e. ZZ | 
						
							| 2 | 1 | a1i |  |-  ( N e. ZZ -> 2 e. ZZ ) | 
						
							| 3 |  | id |  |-  ( N e. ZZ -> N e. ZZ ) | 
						
							| 4 | 2 3 | zmulcld |  |-  ( N e. ZZ -> ( 2 x. N ) e. ZZ ) | 
						
							| 5 | 4 | peano2zd |  |-  ( N e. ZZ -> ( ( 2 x. N ) + 1 ) e. ZZ ) | 
						
							| 6 |  | bitsp1 |  |-  ( ( ( ( 2 x. N ) + 1 ) e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( ( 2 x. N ) + 1 ) ) <-> M e. ( bits ` ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) ) ) ) | 
						
							| 7 | 5 6 | sylan |  |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( ( 2 x. N ) + 1 ) ) <-> M e. ( bits ` ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) ) ) ) | 
						
							| 8 |  | 2re |  |-  2 e. RR | 
						
							| 9 | 8 | a1i |  |-  ( N e. ZZ -> 2 e. RR ) | 
						
							| 10 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 11 | 9 10 | remulcld |  |-  ( N e. ZZ -> ( 2 x. N ) e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( N e. ZZ -> ( 2 x. N ) e. CC ) | 
						
							| 13 |  | 1cnd |  |-  ( N e. ZZ -> 1 e. CC ) | 
						
							| 14 |  | 2cnd |  |-  ( N e. ZZ -> 2 e. CC ) | 
						
							| 15 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 16 | 15 | a1i |  |-  ( N e. ZZ -> 2 =/= 0 ) | 
						
							| 17 | 12 13 14 16 | divdird |  |-  ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) ) | 
						
							| 18 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 19 | 18 14 16 | divcan3d |  |-  ( N e. ZZ -> ( ( 2 x. N ) / 2 ) = N ) | 
						
							| 20 | 19 | oveq1d |  |-  ( N e. ZZ -> ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) = ( N + ( 1 / 2 ) ) ) | 
						
							| 21 | 17 20 | eqtrd |  |-  ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( N + ( 1 / 2 ) ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( N e. ZZ -> ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) = ( |_ ` ( N + ( 1 / 2 ) ) ) ) | 
						
							| 23 |  | halfge0 |  |-  0 <_ ( 1 / 2 ) | 
						
							| 24 |  | halflt1 |  |-  ( 1 / 2 ) < 1 | 
						
							| 25 | 23 24 | pm3.2i |  |-  ( 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) | 
						
							| 26 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 27 |  | flbi2 |  |-  ( ( N e. ZZ /\ ( 1 / 2 ) e. RR ) -> ( ( |_ ` ( N + ( 1 / 2 ) ) ) = N <-> ( 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) ) ) | 
						
							| 28 | 26 27 | mpan2 |  |-  ( N e. ZZ -> ( ( |_ ` ( N + ( 1 / 2 ) ) ) = N <-> ( 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) ) ) | 
						
							| 29 | 25 28 | mpbiri |  |-  ( N e. ZZ -> ( |_ ` ( N + ( 1 / 2 ) ) ) = N ) | 
						
							| 30 | 22 29 | eqtrd |  |-  ( N e. ZZ -> ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) = N ) | 
						
							| 31 | 30 | adantr |  |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) = N ) | 
						
							| 32 | 31 | fveq2d |  |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( bits ` ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) ) = ( bits ` N ) ) | 
						
							| 33 | 32 | eleq2d |  |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( M e. ( bits ` ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) ) <-> M e. ( bits ` N ) ) ) | 
						
							| 34 | 7 33 | bitrd |  |-  ( ( N e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( ( 2 x. N ) + 1 ) ) <-> M e. ( bits ` N ) ) ) |