Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
|- 2 e. ZZ |
2 |
1
|
a1i |
|- ( N e. ZZ -> 2 e. ZZ ) |
3 |
|
id |
|- ( N e. ZZ -> N e. ZZ ) |
4 |
2 3
|
zmulcld |
|- ( N e. ZZ -> ( 2 x. N ) e. ZZ ) |
5 |
4
|
peano2zd |
|- ( N e. ZZ -> ( ( 2 x. N ) + 1 ) e. ZZ ) |
6 |
|
bitsp1 |
|- ( ( ( ( 2 x. N ) + 1 ) e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( ( 2 x. N ) + 1 ) ) <-> M e. ( bits ` ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) ) ) ) |
7 |
5 6
|
sylan |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( ( 2 x. N ) + 1 ) ) <-> M e. ( bits ` ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) ) ) ) |
8 |
|
2re |
|- 2 e. RR |
9 |
8
|
a1i |
|- ( N e. ZZ -> 2 e. RR ) |
10 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
11 |
9 10
|
remulcld |
|- ( N e. ZZ -> ( 2 x. N ) e. RR ) |
12 |
11
|
recnd |
|- ( N e. ZZ -> ( 2 x. N ) e. CC ) |
13 |
|
1cnd |
|- ( N e. ZZ -> 1 e. CC ) |
14 |
|
2cnd |
|- ( N e. ZZ -> 2 e. CC ) |
15 |
|
2ne0 |
|- 2 =/= 0 |
16 |
15
|
a1i |
|- ( N e. ZZ -> 2 =/= 0 ) |
17 |
12 13 14 16
|
divdird |
|- ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) ) |
18 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
19 |
18 14 16
|
divcan3d |
|- ( N e. ZZ -> ( ( 2 x. N ) / 2 ) = N ) |
20 |
19
|
oveq1d |
|- ( N e. ZZ -> ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) = ( N + ( 1 / 2 ) ) ) |
21 |
17 20
|
eqtrd |
|- ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( N + ( 1 / 2 ) ) ) |
22 |
21
|
fveq2d |
|- ( N e. ZZ -> ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) = ( |_ ` ( N + ( 1 / 2 ) ) ) ) |
23 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
24 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
25 |
23 24
|
pm3.2i |
|- ( 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) |
26 |
|
halfre |
|- ( 1 / 2 ) e. RR |
27 |
|
flbi2 |
|- ( ( N e. ZZ /\ ( 1 / 2 ) e. RR ) -> ( ( |_ ` ( N + ( 1 / 2 ) ) ) = N <-> ( 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) ) ) |
28 |
26 27
|
mpan2 |
|- ( N e. ZZ -> ( ( |_ ` ( N + ( 1 / 2 ) ) ) = N <-> ( 0 <_ ( 1 / 2 ) /\ ( 1 / 2 ) < 1 ) ) ) |
29 |
25 28
|
mpbiri |
|- ( N e. ZZ -> ( |_ ` ( N + ( 1 / 2 ) ) ) = N ) |
30 |
22 29
|
eqtrd |
|- ( N e. ZZ -> ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) = N ) |
31 |
30
|
adantr |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) = N ) |
32 |
31
|
fveq2d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( bits ` ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) ) = ( bits ` N ) ) |
33 |
32
|
eleq2d |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( M e. ( bits ` ( |_ ` ( ( ( 2 x. N ) + 1 ) / 2 ) ) ) <-> M e. ( bits ` N ) ) ) |
34 |
7 33
|
bitrd |
|- ( ( N e. ZZ /\ M e. NN0 ) -> ( ( M + 1 ) e. ( bits ` ( ( 2 x. N ) + 1 ) ) <-> M e. ( bits ` N ) ) ) |